Schnittpunkt

Mobile Features AB

Du hast vielleicht schon Funktionen gesehen, welche sich an bestimmten Punkten schneiden. Dieser Punkt, an dem sich die Funktionsgraphen schneiden, nennt sich Schnittpunkt.

Los geht’s

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Schnittpunkt Lehrer

  • 16 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 08.06.2022
  • 16 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 08.06.2022
  • 16 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Schnittpunkt einer Funktion mit der x und y-Achse

    Funktionen, die Du in ein Koordinatensystem einzeichnest, schneiden oder berühren die Koordinatenachsen, also die x- und y-Achse, meist in einem oder mehreren Punkten.

    Schnittpunkt lineare Funktion StudySmarterAbbildung 1: Nullstelle x und y-Achsenabschnitt y einer linearen Funktion f(x)

    Die Funktion f(x) schneidet die x-Achse in einem Punkt Xf. Dieser Punkt wird Nullstelle genannt.

    Der Schnittpunkt Yf zwischen Funktion f(x) und y-Achse wird Y-Achsenabschnitt genannt.

    Die Nullstellen einer Funktion

    Um wichtige Aufgaben der Analysis lösen zu können, ist die Berechnung der Nullstellen ein essentieller Bestandteil.

    Eine Nullstelle einer Funktion f(x) ist eine Zahl a aus der Definitionsmenge der Funktion, für die gilt f(a)=0.

    Rein grafisch betrachtet, ist eine Nullstelle x der Schnittpunkt einer Funktion f(x) mit der x-Achse im Koordinatensystem.

    Unterschiedliche Funktionen können eine unterschiedliche Anzahl von Nullstellen haben. Die maximal mögliche Anzahl von Nullstellen hängt von dem Grad der Funktion, also der Höhe des größten Exponenten der Funktion, ab. Eine Funktion ersten Grades kann maximal eine Nullstelle haben. Quadratische Funktionen (Funktionen zweiten Grades) haben maximal zwei Nullstellen.

    Nullstellen von linearen Funktionen

    Lineare Funktionen sind Funktionen ersten Grades.

    Eine lineare Funktion ist durch folgende Funktionsgleichung definiert:

    f(x) =mx + n

    Der Graph einer linearen Funktion ist eine Gerade.

    Die Variable m gibt dabei die Steigung der Geraden an und die Variable n steht für den y-Achsenabschnitt.

    Jede lineare Funktion, die nicht parallel zur x-Achse läuft, schneidet sie genau einmal. Somit hat jede lineare Funktion f(x) mit einer Steigung m, die ungleich null ist, genau eine Nullstelle x.

    Schnittpunkt Nullstelle einer linearen Funktion StudySmarterAbbildung 2: Nullstelle x einer linearen Funktion f(x)

    Um die Nullstellen einer Funktion f(x) ermitteln zu können, musst Du die Funktion gleich null setzen und nach x auflösen.

    Schau Dir das mal in einem Beispiel an.

    Aufgabe 1

    Bestimme die Nullstellen der folgenden Funktion:

    f(x)=2x+1

    Lösung

    1. Schritt: Funktion f(x) gleich null setzen.

    f(x)=02x+1=0

    2. Schritt: Gleichung nach x auflösen.

    2x+1=0 -12x=-1 :2x=-0,5

    Die Funktion besitzt an der Stelle x=-0,5 eine Nullstelle.

    Nullstellen von quadratischen Funktionen

    Quadratische Funktionen sind Funktionen zweiten Grades.

    Die quadratische Funktion ist unter anderem durch folgende Funktionsgleichung definiert:

    f(x) =ax2 + bx + c

    Der Graph einer quadratischen Funktion nennt sich Parabel.

    Die Variable a gibt dabei an, wie breit bzw. schmal die Parabel ist. Die Unbekannte c steht für den y-Achsenabschnitt.

    Parabeln können entweder keine, eine, oder zwei Nullstelle(n) haben. Die Anzahl ist abhängig von der Lage des Scheitelpunktes S.

    Parabeln ohne Nullstellen

    Eine Parabel hat keine Nullstelle, wenn sie die x-Achse nicht schneidet. Bei einer nach oben geöffneten Parabel liegt dann der Scheitelpunkt S oberhalb der x-Achse.

    Schnittpunkt Parabel ohne Nullstelle StudySmarterAbbildung 3: Parabel der Funktion f(x) ohne Nullstellen

    Parabeln mit einer Nullstelle

    Eine Parabel mit einer Nullstelle berührt die x-Achse in nur einem Punkt. In so einem Fall ist die einzige Nullstelle x auch immer gleichzeitig der x-Wert des Scheitelpunktes S der Parabel.

    Schnittpunkt Parabel mit einer Nullstelle StudySmarterAbbildung 4: Parabel der Funktion f(x) mit einer Nullstelle x

    Parabeln mit zwei Nullstellen

    Eine Parabel hat zwei Nullstellen x1 und x2, wenn die Parabel die x-Achse schneidet und der Scheitelpunkt S bei einer nach oben geöffneten Parabel unterhalb der x-Achse liegt.

    Schnittpunkt Parabel mit zwei Nullstellen StudySmarterAbbildung 5: Parabel der Funktion f(x) mit zwei Nullstellen x1 und x2

    Wenn Du mehr über Nullstellen berechnen erfahren möchtest, kannst Du Dir die Erklärung "Nullstelle" anschauen.

    Der y-Achsenabschnitt

    Der y-Achsenabschnitt einer Funktion ist ebenfalls ein wichtiger Bestandteil der Analysis.

    Der y-Achsenabschnitt ist der Schnittpunkt einer Funktion f(x) mit der y-Achse.

    Für eine Funktion f(x) entspricht der y-Achsenabschnitt der folgenden Gleichung:

    y0= f(0)

    Y-Achsenabschnitt bei linearen Funktionen

    Jede lineare Funktion, die nicht parallel zur y-Achse ist, schneidet diese genau einmal. In der allgemeinen Funktionsgleichung linearer Funktionen gibt der Buchstabe n den y-Achsenabschnitt direkt an.

    Schnittpunkt y-Achsenabschnitt einer linearen Funktion StudySmarterAbbildung 6: Y-Achsenabschnitt y0 einer linearen Funktion f(x)

    Da sich der y-Achsenabschnitt direkt auf der y-Achse befindet, ist der x-Wert von diesem Punkt gleich null. Um deny-Achsenabschnitt zu berechnen, setzt Du deshalb in die Funktion f(x) für x eine Null ein.

    Schau Dir das mal in einem Beispiel an.

    Aufgabe 2

    Bestimme den y-Achsenabschnitt der folgenden Funktion:

    f(x)=2x+1

    Lösung

    Setze also für x eine 0 in die Funktionsgleichung ein.

    f(0)=2·0 + 1f(0)=1

    Der y-Achsenabschnitt der Funktion liegt bei Y0(0|1).

    Y-Achsenabschnitt bei quadratischen Funktionen

    Jede quadratische Funktion schneidet die y-Achse in genau einem Punkt y0. In der allgemeinen Funktionsgleichung für quadratische Funktionen gibt die Variable c den y-Achsenabschnitt direkt an.

    Schnittpunkt y-Achsenabschnitt einer Parabel StudySmarterAbbildung 7: Y-Achsenabschnitt y0 einer quadratischen Funktion f(x)

    Wenn Du mehr über die Berechnung des y-Achsenabschnitts erfahren möchtest, kannst Du Dir die dazugehörige Erklärung anschauen.

    Schnittpunkt zweier Funktionen

    Neben den Schnittpunkten mit den Koordinatenachsen können Funktionen auch Schnittpunkte mit anderen Funktionen haben.

    Der Schnittpunkt S zweier Funktionen f(x) und g(x) ist der Punkt, an dem zwei Graphen sich innerhalb eines Koordinatensystems treffen und überschneiden. Beide Funktionen f(x) und g(x) besitzen an dieser Stelle den gleichen x- und y-Wert.

    Die Anzahl der Schnittpunkte hängt dabei von der Art der Funktionen ab. Deshalb kannst Du Dir die Schnittpunkte bestimmter Funktionsarten in den folgenden Abschnitten genauer anschauen. Außerdem lernst Du, wie Du Schnittpunkte berechnen kannst, ohne dabei die Funktionsgraphen gesehen zu haben.

    Schnittpunkt zweier Geraden (lineare Funktion)

    Zwischen zwei Geraden gibt es drei verschiedene Möglichkeiten, wie viele Schnittpunkte es geben kann:

    Zwei Geraden können sich entweder in einem Punkt, in keinem Punkt oder in unendlich vielen Punkten schneiden.

    Zwei Geraden schneiden sich in einem Punkt

    Alle Geraden, die eine unterschiedliche Steigung m haben, schneiden sich einmal in einem Punkt S.

    Schnittpunkt zweier Geraden StudySmarterAbbildung 8: Schnittpunkt S zweier Geraden f(x) und h(x)

    Parallel verlaufende Geraden

    Haben Geraden die gleiche Steigung m, liegen sie parallel zueinander. Das führt dann dazu, dass sie keinen Schnittpunkt S haben.

    Schnittpunkt Geraden ohne Schnittpunkt StudySmarterAbbildung 9: Geraden h(x) und f(x) ohne Schnittpunkt

    Geraden schneiden sich in unendlich vielen Punkten

    Geraden, die nicht nur die gleiche Steigung, sondern auch den gleichen y-Achsenabschnitt haben, sind identisch und liegen somit aufeinander. Das führt dazu, dass sie unendlich viele Schnittpunkte haben.

    Schnittpunkt Geraden mit unendlichen Schnittpunkten StudySmarterAbbildung 10: Geraden f(x) und h(x) mit unendlichen Schnittpunkten

    Schnittpunkte zwischen linearen Funktionen berechnen

    Um den Schnittpunkt von zwei Funktionen zu berechnen, kannst Du Dich immer nach folgendem Ablauf richten.

    • 1. Schritt: Gleichsetzen der beiden Funktionen
    • 2.Schritt: Auflösen der Gleichung nach x
    • 3.Schritt: Einsetzen des x-Wertes in eine der beiden Funktionen

    Dabei unterscheidet sich das Vorgehen auch nicht bei Funktionen mit einem höheren Grad, wie z. B. bei quadratischen Funktionen.

    Schau Dir das mal in einem Beispiel an.

    Aufgabe 3

    Berechne die Schnittpunkte der folgenden Funktionen.

    f(x)=7x+5g(x)=1,5x+4

    Lösung

    1. Schritt: Gleichsetzen der Funktionen

    Im ersten Schritt setzt Du die Funktionen f(x) und g(x) miteinander gleich. Dabei fasst Du die entstandene Gleichung immer weiter zusammen durch Termumformungen und löst sie nach x auf.

    f(x)=g(x)7x+5=1,5x+4

    2. Schritt: Auflösen der Gleichung nach x:

    7x+5=1,5x+4 -1,5x5,5x+5=4 -55,5x=-1 | :5,5x=-211

    3. Schritt: Einsetzen des x-Wertes in eine der Funktionen

    Im letzten Schritt setzt Du die Lösung, die Du für x erhalten hast, in eine der Funktionsgleichung, also f(x) oder g(x) ein. Welche Du dabei wählst, ist egal, denn beide Funktionen haben denselben Schnittpunkt S.

    f(-211)=7·(-211)+5f(-211)=4111

    Der Schnittpunkt der beiden Funktionen befindet sich an dem Punkt S-211|4111.

    Wenn Du auch wissen möchtest, wie der Schnittpunkt zweier Geraden berechnet wird, dann kannst Du Dir die Erklärung "Schnittpunkt zweier Geraden" anschauen.

    Schnittwinkel von Geraden berechnen

    Im diesem Abschnitt geht es um den Winkel, in dem sich zwei Funktionen miteinander schneiden.

    Wenn sich zwei Geraden schneiden, bilden sie einen sogenannten Schnittwinkel. Dieser lässt sich mit Hilfe von einer Formel berechnen, wobei Du stets die Steigung der Funktionen benötigst. Wenn zwei lineare Funktionen dieselbe Steigung haben, können sie sich nicht schneiden und dementsprechend gibt es auch keinen Schnittwinkel.

    Um die Schnittwinkel berechnen zu können, kannst Du diese Formel anwenden.

    Formel zur Berechnung von Schnittwinkeln zweier Geraden:

    tan α=m1-m21+m1·m2

    Dabei sind m1 und m2 die Steigungen der Geraden.

    Aufgelöst nach dem Winkel α lautet die Formel:

    α=tan-1 m1-m21+m1·m2

    Du musst den Schnittwinkel in Betragsstriche setzen, da er nur positive Werte annehmen kann!

    Du kannst auch den Schnittwinkel zwischen einer Gerade und den beiden Koordinatenachsen berechnen:

    Der Winkel α zwischen Gerade und x-Achse lässt sich berechnen durch die Formel

    tan α=m

    Dabei ist m die Steigung der Geraden.

    Der Winkel β zwischen Gerade und y-Achse lässt sich berechnen durch die Formel

    β=180°-90°-α

    Schnittpunkt quadratische und lineare Funktion

    Eine Gerade und eine Parabel können sich in einem Punkt S, in zwei Punkten S1 und S2 oder in keinem Punkt schneiden.

    Gerade und Parabel schneiden sich in einem Punkt

    Bei einer Geraden, die eine Parabel in nur einem Punkt schneidet, handelt es sich um eine sogenannte Tangente. Sie berührt die Parabel sozusagen in einem Punkt.

    Schnittpunkt Gerade und Parabel StudySmarterAbbildung 11: Schnittpunkt S zwischen Parabel f(x) und Geraden g(x)

    Gerade und Parabel schneiden sich in zwei Punkten

    Bei einer Geraden, die eine Parabel in zwei Punkten schneidet, handelt es sich um eine sogenannte Sekante.

    Schnittpunkt Gerade und Parabel StudySmarterAbbildung 12: Zwei Schnittpunkte S1 und S2 zwischen Parabel f(x) und Geraden g(x)

    Gerade und Parabel schneiden sich in keinem Punkt

    Eine Gerade, die eine Parabel in keinem Punkt schneidet, wird Passante genannt.

    Schnittpunkt Gerade und Parabel StudySmarterAbbildung 13: Parabel f(x) und Gerade g(x) ohne Schnittpunkte

    Auch zum Schnittpunkt von einer Parabel und einer Geraden gibt es eine ausführliche Erklärung auf StudySmarter. Diese heißt "Schnittpunkte Parabel Gerade".

    Schnittpunkte zwischen linearer und quadratischer Funktion berechnen

    Hier gehst Du genau so vor, wie bei der Berechnung des Schnittpunktes zwischen zwei linearen Funktionen:

    • Gleichsetzten der Funktionen
    • Auflösen nach x
    • Einsetzten der x - Werte in eine der gegebenen Funktionen

    Wie Du bereits gelernt hast, können zwischen Gerade und Parabel bis zu zwei Schnittpunkte existieren. Demnach kann es sein, dass Du beim zweiten Schritt, also dem Auflösen nach x, zwei Lösungen für x erhältst. Da es sich hier um eine Funktion zweiten Grades handelt, bietet sich bei der Berechnung für die x-Werte die pq-Formel oder die Mitternachtsformel an.

    Zur Erinnerung:

    Die pq-Formel lautet: x1,2=-p2±p22-q

    Die Mitternachtsformel lautet: x1,2=-b±b2-4a·c2a

    Schau Dir das mal in einem Beispiel an.

    Aufgabe 4

    Berechne die Schnittpunkte der folgenden Funktionen:

    f(x)=x2+1g(x)=-x+4

    Lösung

    1. Schritt: Funktionen gleichsetzen und zusammenfassen

    Bei Funktionen höheren Grades ist es sinnvoll, die Gleichung, die aus dem Gleichsetzen entsteht, möglichst zu vereinfachen bzw. zusammenzufassen und gleich null zu setzen, sodass eine neue Funktion entsteht.

    f(x)=g(x)x2+1=-x+4 +xx2+x+1=4 -4x2+x-3=0

    Damit erhältst Du eine neue Funktion, aus der Du jetzt die Nullstellen bestimmen kannst.

    2. Schritt: Nullstellen ermitteln, also Gleichung nach x auflösen

    Hier bietet es sich an, die pq-Formel zu benutzen. Alternativ kannst Du auch die Mitternachtsformel verwenden.

    x1,2=-12±(12)2+3=-0,5±3,25x11,3x2-2,3

    3. Schritt: x-Werte in eine der gegebenen Funktionen einsetzen

    g(1,3)=-1,3+4g(1,3)=2,7g(-2,3)=2,3+4g(-2,3)=6,3

    Als Probe, ob Du richtig gerechnet hast, kannst Du den x-Wert auch in die andere Funktion f(x) einsetzen und schauen, ob dasselbe Ergebnis dabei herauskommt.

    Die Funktionen schneiden sich in den Punkten S1 1,3|2,7 und S2 -2,3|6,3

    Schnittpunkte zwischen zwei quadratischen Funktionen berechnen

    Quadratische Funktionen können sich in keinem Punkt, einem Punkt oder zwei Punkten schneiden.

    Ein Schnittpunkt zwischen quadratischen Funktionen

    Schnittpunkt quadratische Funktionen StudySmarterAbbildung 14: Zwei Parabeln f(x) und g(x) mit einem Schnittpunkt S

    Zwei Schnittpunkte zwischen quadratischen Funktionen

    Schnittpunkt quadratische Funktionen StudySmarterAbbildung 15: Zwei Parabeln f(x) und g(x) mit zwei Schnittpunkten S1 und S2

    Kein Schnittpunkt zwischen zwei Parabeln

    Schnittpunkt Parabeln StudySmarterAbbildung 16: Zwei Parabeln f(x) und g(x) ohne Schnittpunkte

    Schnittpunkt zwischen zwei quadratischen Funktionen berechnen

    Da sich das Vorgehen hier nicht von den anderen Beispielen unterscheidet, kannst Du Dir die Berechnung in der folgenden Aufgabe anschauen.

    Aufgabe 5

    Um die Schnittpunkte zwischen zwei quadratischen Funktionen zu berechnen, gehst Du genau so vor, wie in Aufgabe 4.

    Berechne die Schnittpunkte der folgenden Funktionen:

    f(x)=x2+2xg(x)=x2+3x

    Lösung

    1. Schritt: Funktionen gleichsetzen und vereinfachen

    f(x)=g(x)x2+2x=x2+3x -2xx2=x2+5x -x20=5x

    2. Schritt: Gleichung nach x auflösen (Nullstellen ermitteln)

    0=5x ÷50=x

    3. Schritt: x-Werte in eine der gegebenen Funktionen einsetzen

    f(0)=02+2·0f(0)=0

    Die Funktionen schneiden sich in dem Punkt S(0|0).

    Schnittpunkte zwischen sonstigen Polynomfunktionen

    Neben linearen und quadratischen Funktionen können auch Polynome höheren Grades Schnittpunkte mit anderen Graphen haben. An dem Grad der Funktion kannst Du dabei die maximale Anzahl der Schnittpunkte ablesen.

    Die maximal mögliche Anzahl der Schnittpunkte zwischen Polynomfunktionen entspricht immer dem Grad (Unbekannte mit höchstem Exponent) der Funktion.

    Eine Funktion zweiten Grades kann somit beispielsweise mit einer Geraden maximal 2 Schnittpunkte haben. Eine Funktion dritten Grades kann eine Gerade höchstens 3 Mal schneiden, usw.

    Eine Funktion dritten Gerades wird durch folgende Funktionsgleichung definiert:

    f(x)=ax3 +bx2 + cx + d

    Der Faktor a gibt dabei an, wie schmal bzw. breit die Funktion ist. Die Unbekannte d steht für den y-Achsenabschnitt.

    Hier kannst Du zum Beispiel sehen, wie sich eine Funktion dritten Grades mit einer linearen Funktion schneidet.

    Schnittpunkt Polynom und Gerade StudySmarterAbbildung 17: Zwei Schnittpunkte S1 und S2 zwischen Funktion f(x) und Gerade g(x)

    Schnittpunkt zwischen Polynomfunktionen berechnen

    Die Berechnung der Schnittpunkte von beispielsweise einer Funktion dritten Grades folgt demselben Ablauf, dem Du bei den anderen Schnittpunktberechnungen auch gefolgt bist. Einzig das Auflösen der Gleichung nach x im zweiten Schritt kann sich wegen des höheren Grades von den anderen Rechnungen unterscheiden. Schau Dir dazu am besten das Beispiel an.

    Aufgabe 6

    Berechne die Schnittpunkte der folgenden Funktionen

    f(x)=x3+2x2+2x+2g(x)=x+2

    Lösung

    1. Schritt: Funktionen gleichsetzen und vereinfachen

    f(x)=g(x)x3+2x2+2x+2=x+2 -xx3+2x2+x+2=2 -2x3+2x2+x=0

    2. Schritt: Auflösen der Gleichung nach x (Nullstellen bestimmen)

    Da an dieser Stelle ein Polynom dritten Gerades vorliegt, kannst Du nicht einfach die pq-Formel anwenden. Hier bietet es sich an, bei der Gleichung zunächst ein x auszuklammern.

    x3+2x2+x=0 x ausklammernx(x2+2x+1)=0

    Ist ein Produkt gleich null, so muss mindestens einer der Faktoren gleich null sein.

    Demnach gilt Folgendes:

    x1=0x2+2x+1=0

    Jetzt kann der zweite Term mit der pq-Formel berechnet werden.

    x2,3=-22±(22)2-1x2,3=-1±0x2=-1x3=-1

    Wie Du sehen kannst, stimmen die Werte für x2 und x3 überein. Daraus kannst Du schließen, dass zwischen den Funktionen f(x) und g(x) nur zwei Schnittpunkte existieren. Diese sind folgende:

    x1=0x2=-1

    Das Ausklammern von x mit anschließender Anwendung der pq-Formel funktioniert nicht immer, um die Nullstellen von einer Funktion dritten Grades zu bestimmen. Eine weitere Möglichkeit dafür ist die Polynomdivision. Wenn Du wissen möchtest, wie Du eine Polynomdivision durchführen kannst, schau Dir gerne den Artikel dazu an.

    3. Schritt: x-Werte in eine Funktion einsetzen

    In welche Funktion Du die x-Werte für den jeweiligen y-Wert einsetzt, ist eigentlich egal. Zu empfehlen ist, die Funktion zu nehmen, die weniger komplex ist. Hier ist das also die lineare Funktion g(x).

    Du setzt also nach einander die Werte x1 und x2 in die Funktion g(x) ein.

    g(0)=0+2g(0)=2g(-1)=-1+2g(-1)=1

    Die Funktionen schneiden sich in den Punkten S10|2 und S2 -1|1.

    Schnittpunkte zwischen anderen Funktionen

    Die maximale Anzahl an Schnittpunkten hängt immer von der Art der Funktionen ab. Im Allgemeinen gibt es aber keine Höchstgrenze für Schnittpunkte. Beispielsweise können eine konstante Funktion und eine Sinus- oder Kosinusfunktion unendlich viele Schnittpunkte haben, auch wenn sie nicht identisch sind.

    Wenn Du mehr über Schnittpunkte zweier Funktionen lernen möchtest, dann kannst Du Dir den Artikel "Schnittpunkt zweier Funktionen" anschauen.

    Schnittpunkt – Das Wichtigste

    • Eine Funktion f(x) kann sich sowohl mit den Koordinatenachsen schneiden als auch mit anderen Funktionen.

    • Schnittpunkte einer Funktion f(x) mit der x-Achse nennen sich Nullstellen. Sie werden wie folgt berechnet: f(x) = 0.

    • Der Schnittpunkt einer Funktion f(x) mit der y-Achse wird y-Achsenabschnitt genannt. Dieser wird berechnet, indem für x in die Funktion null eingesetzt wird, also y0=f(0).

    • Der Schnittpunkt S zweier Funktionen f(x) und g(x) ist der Punkt, an dem zwei Graphen sich innerhalb eines Koordinatensystems treffen und überschneiden. Beide Funktionen f(x) und g(x) besitzen an dieser Stelle den gleichen x- und y-Wert.

    • Die maximal mögliche Anzahl an Schnittpunkten zweier Funktionen entspricht dem Grad der Funktion. Demnach haben zwei lineare Funktionen maximal einen Schnittpunkt, zwei quadratische Funktionen bis zu zwei Schnittpunkte, usw. .

    • Um den Schnittpunkt von zwei Funktionen zu berechnen, kannst Du Dich immer nach folgendem Ablauf richten:

      • 1. Schritt: Gleichsetzen der beiden Funktionen
      • 2. Schritt: Auflösen der Gleichung nach x
      • 3.Schritt: Einsetzen des x-Wertes in eine der beiden Funktionen.
    • Die Formel zur Berechnung des Schnittwinkels lautet wie folgt: tan α=m1-m21+m1·m2.

    Häufig gestellte Fragen zum Thema Schnittpunkt

    Wann haben zwei Geraden keinen Schnittpunkt?

    Zwei Geraden haben keinen Schnittpunkt, wenn sie parallel sind, also die gleiche Steigung m besitzen, jedoch dabei einen unterschiedlichen y-Achsenabschnitt n haben.

    Wie berechnet man Schnittpunkte von Graphen?

    Um Schnittpunkte zweier Graphen zu berechnen, musst Du die beiden Funktionen f(x) und g(x) gleichsetzen und die Gleichung nach x auflösen. Anschließend setzt Du die ermittelten x-Werte in eine der Funktionen ein und erhältst somit die y-Werte.

    Was ist der Schnittpunkt einer linearen Funktion?

    Der Schnittpunkt einer linearen Funktion f(x) mit einer anderen linearen Funktion g(x) ist der Punkt S, an dem sich die beiden Geraden schneiden. Außerdem kann die Funktion f(x) auch einen Schnittpunkt mit der x-Achse (Nullstelle) und mit der y-Achse (y-Achsenabschnitt) haben.

    Wie berechnet man den Schnittpunkt von zwei Parabeln?

    Um Schnittpunkte von zwei Parabeln zu berechnen, musst Du die beiden Funktionen f(x) und g(x) gleichsetzen und die Gleichung z.B. durch die pq-Formel nach x auflösen. Anschließend setzt Du die ermittelten x-Werte in eine der Funktionen f(x) oder g(x) ein und erhältst somit die y-Werte der Schnittpunkte.

    Erklärung speichern

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Wie nennt man den Punkt, an dem eine Funktion die x-Achse schneidet?

    Was gibt der Buchstabe 'm' in der Funktionsgleichung einer linearen Funktion an?

    Was ist eine Nullstelle einer Funktion?

    Weiter
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 16 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren