Diagonale Rechteck – Eigenschaften und Grundlagenwissen
Das Rechteck ist eines von vielen möglichen Vierecken. Was es von anderen unterscheidet, ergibt sich aus der genauen Definition.
Das Rechteck ist ein Viereck, dessen Innenwinkel alle rechte Winkel sind.
Abbildung 1: Rechteck
Als Viereck hat es natürlich einerseits vier Ecken, die über vier Seiten miteinander verbunden sind. Eine Ecke ist über einen rechen Winkel jeweils mit zwei anderen Ecken verbunden. Mit einer der vier anderen Ecken hat es also keine direkte Verbindung. Diese führt diagonal über das Rechteck.
Wie beim Fußballfeld. Stehst Du an einer Ecke und folgst mit den Augen der Linie zu einer anderen Ecke, hast Du einerseits die hinter dem Tor, mit auf der gleichen, kurzen Seite und andererseits die auf der langen Seite. Die dritte Eckfahne ist schräg gegenüber und am weitesten weg von den drei Möglichkeiten.
Wenn Du jetzt einen Ball genau zu dieser Eckfahne schießt, fliegt dieser entlang der sogenannten Diagonalen.
Eine Diagonale eines geometrischen Objektes ist eine Strecke, die innerhalb von diesem verläuft und zwei Ecken miteinander verbindet, ohne selbst eine Seite zu sein.
Und wenn Du jetzt herausfinden willst, wie weit Du den Ball schießen musst, brauchst Du noch etwas, was sonst bei Dreiecken auftaucht: der Satz des Pythagoras.
Warum es ein Dreieck ist, siehst Du, wenn Du Dir jetzt mal das Fußballfeld von oben als Rechteck vorstellst und schaust, welche Linie der Ball hinter sich herzieht, wenn Du ihn zur anderen Ecke schießt.
Abbildung 3: Ein Rechteck mit einer eingezeichneten Diagonalen
Dann siehst Du, wie sich zwei Dreiecke bilden und gegenüber Deiner "geschossenen" Diagonalen ist ein rechter Winkel eines dieser Dreiecke. Damit kannst Du bei der Berechnung der Diagonalen so tun, als würde die Diagonale zusammen mit einer kurzen und einer langen Seite ein Dreieck bilden. Wenn Du jetzt die beiden Seiten, die eigentlich zum Rechteck gehören (also die Außenlinien des Fußballfeldes) kennst, kannst Du die dritte Seite des rechtwinkligen Dreiecks mit dem sogenannten Satz des Pythagoras berechnen.
Der Satz des Pythagoras besagt, dass in einem rechtwinkligen Dreieck das Quadrat der Hypotenuse c (die Seite gegenüber dem rechten Winkel) genauso groß ist, wie die Summe der Quadrate der anderen beiden Seiten a und b.
Abbildung 4: Rechtwinkliges Dreieck mit den Katheten a und b, sowie der Hypotenuse c
Als Formel mit diesen Seiten heißt das dann:
Und damit hast Du alles an die Hand bekommen, um die Fragen oben zu beantworten und daraus viele Dinge rundum das Rechteck berechnen zu können.
Anhand der Dreiecksungleichung kannst Du dann auch feststellen, dass die Diagonale länger sein muss, als die beiden Seiten. Damit kannst Du vier Menschen, die Du in einem Rechteck aufstellst, nie so aufstellen, dass sie sich schräg gegenüberstehen, genauso weit voneinander entfernt sind, wie zwei, die nebeneinander stehen.
Diagonale Rechteck berechnen mit Formel
Wie Du die lange Seite c eines rechtwinkligen Dreiecks berechnen kannst, kannst Du genauso die Diagonale im Rechteck berechnen. Dafür musst Du der Diagonale zunächst einen Namen geben. Zum Beispiel d.
Abbildung 5: Ein rechtwinkliges Dreieck entsteht beim Zeichnen der Diagonalen.
Damit ergibt sich aus dem Satz des Pythagoras schnell die Länge der Diagonale eines Rechtecks, wenn Du das c durch d ersetzt und die Wurzel ziehst.
Sind a und b Seiten eines Rechtecks und d die Diagonale, dann gilt für die Länge der Diagonalen:
Und dann kannst Du auch direkt die Länge Deines Schusses von einer Ecke zur schräg gegenüberliegenden berechnen.
Stell Dir also vor, Du steht an der Eckfahne. Die andere Eckfahne an der kurzen Seite, hinter dem Tor, ist weit weg und die an der langen Seite bei der anderen Mannschaft ist weit weg. Mit dem Bild von oben kannst Du jetzt die Diagonale d bestimmen.
Du hast also Dein Rechteck mit den beiden Seitenlängen a und b:
Setzt Du a und b in die Formel der letzten Definition ein, erhältst Du mit diesen beiden Werten:
Gibst Du das in den Rechner ein, erhältst Du:
Und das ergibt gerundet
Und damit weißt Du, dass Du mit tatsächlich noch weiter schießen müsstest als zu den anderen beiden Ecken.
Seitenlänge Rechteck aus Diagonale bestimmen
Was machst Du, aber wenn Du die Diagonale und eine Seite kennst, aber nicht die zweite Seite des Rechtecks?
Du misst also mit einem Maßband eine Seite eines rechteckigen Raumes und die Diagonale, kannst aber keine der anderen Seiten messen, etwa weil auf beiden Seiten ein Türrahmen im Weg ist.
Wie bereits festgestellt, kannst Du die Breite b des Raumes nicht direkt messen, weil der Türrahmen im Weg ist. Du kannst allerdings die Länge a und die Diagonale d messen.
Ausgehend vom Satz des Pythagoras, mit d als Hypotenuse und a und b als Seiten des Dreiecks, kannst Du mit Umformungen der Gleichung so umstellen, dass eine Formel für b herauskommt:
Und damit hast Du eine Gleichung, um die fehlende Länge der Seite des Bodens bestimmen zu können.
Wenn a eine bekannte Seite eines Rechtecks ist und d die Diagonale, dann kannst Du die unbekannte, zweite Seite des Rechtecks mit folgender Gleichung bestimmen:
Und jetzt kannst Du direkt die Eingangsfrage des Kapitels beantworten.
Stell Dir also vor, dass Du bei einem Raum die Länge einer Seite des Bodens bestimmen willst, diese aber nicht direkt ausmessen kannst, weil etwas im Weg steht. Einer der Gründe dafür könnte sein, dass Du danach die Menge an Tapete der Wand oder die Fläche des Bodens zu bestimmen, um Auslegeware zu kaufen.
Beim Messen der übrigen Seite a misst Du und beim Messen der Diagonale des Raumes.
Und mit den beiden Längen
kannst Du die Formel der Definition direkt benutzen:
Du erhältst dann für b:
Also ist die fehlende Seite des rechteckigen Bodens des Raumes lang.
Diagonale Rechteck Winkel berechnen
Jetzt hast Du also gesehen, wie man Diagonale und Seiten berechnen kann, wenn mindestens zwei der beteiligten Geraden bekannt sind. Wenn Du jetzt aber einen Winkel wissen möchtest, der durch die Diagonale entsteht, kannst Du das auch machen, wenn Du Dir vor Augen führst, dass es sich um zwei rechtwinklige Dreiecke handelt, von denen Du eins betrachten kannst.
Abbildung 7: Aus dem rechten Winkel entstehen zwei neue
Da das Rechteck völlig symmetrisch ist, Du es also komplett um drehst, sieht es genauso aus und Seiten, Diagonale und Winkel sind in gegenüberliegenden Ecken und an gegenüberliegenden Seiten gleich groß.
Darum ist egal, welches der Dreiecke Du betrachtest.
Zu einem Winkel eines rechtwinkligen Dreiecks, hier zum Beispiel α, hat jede der drei Seiten eine spezielle Beziehung und Bezeichnung, die Dir beim Bestimmen von Seiten und Winkeln helfen kann.
Die Hypotenuse c ist immer die Seite gegenüber vom rechten Winkel. Hier ist sie also gegenüber von Punkt C. Sie grenzt an den Winkel α und spannt diesen zusammen mit der Seite b auf.
Seite b nennt man daher die Ankathete. Übrig bleibt die Seite a, die α gegenüberliegt. Sie heißt demzufolge Gegenkathete.
Ein rechtwinkliges Dreieck ABC besteht aus zwei Katheten und der Hypotenuse.
Abbildung 8: Rechtwinkliges Dreieck
Die Seiten heißen für Winkel α:
Hypotenuse c
Ankathete b
Gegenkathete a
wenn der rechte Winkel an Punkt C ist.
Mit diesen Bezeichnungen kannst Du jetzt Winkelfunktionen nutzen, um zum Beispiel aus den gegebenen Seiten die Größe der Winkel zu bestimmen oder aus einer Kombination von Winkel und Seiten andere Seiten zu bestimmen.
Ein Beispiel dafür ist der Sinus, für den Du die Gegenkathete und die Hypotenuse brauchst.
Bei einem rechtwinkligen Dreieck ABC ergibt sich der Sinus eines Winkels aus der Gegenkathete a und der Hypotenuse c
Die Gegenoperation ist der Arcussinus. Wendet man diesen auf beide Seite der Gleichung an, erhält man α direkt.
Auf dem Taschenrechner findest Du den arcsin als sin-1.
Alternativ benutzt Du den Kosinus, bei dem Du die am Winkel anliegende Seite nutzt und jeweils durch die Hypotenuse, also hier die Diagonale teilst.
Du kannst also jederzeit beide Winkel bestimmen, solange Du darauf achtest, welche Seite Du gegeben hast und welche Winkelfunktion Du brauchst.
Ein Winkel α, der zwischen der Diagonalen d und der Seite b liegt, kann folgendermaßen berechnet werden
Auf dem Taschenrechner findest Du den arccos als cos-1.
Dafür brauchst Du den zweiten Winkel gar nicht, sondern nur zwei der Seiten. Was machst Du aber, wenn Du die Hypotenuse nicht gegeben hast, sondern nur die beiden Seiten?
Der Tangens und der Kotangens ergeben sich daraus, dass man die Gegenkathete durch die Ankathete teilt bzw. umgekehrt.
Ein Winkel, der durch Ziehen einer Diagonalen entsteht, kannst Du also genauso berechnen wie einen Winkel in einem rechtwinkligen Dreieck. Wirfst Du einen Blick auf Abbildung 7, dann siehst Du, dass die Diagonale d genau die Stelle der Hypotenuse c einnimmt und damit kannst Du die üblichen Formeln für die Berechnung von Winkeln rechtwinkliger Dreiecke anwenden.
Ein Winkel α, der zwischen der Diagonalen d und der Seite b liegt, kann folgendermaßen berechnet werden:
So könntest Du auch den zweiten Winkel berechnen, aber wenn Du den ersten schon hast, geht das auch einfacher.
Praktisch ist, dass Du nach der Bestimmung eines Winkels den zweiten einfach errechnen kannst, indem Du ihn von den 90°, die ein Innenwinkel eines Rechtecks hast, abziehst. Dann ziehst Du den bekannten Winkel einfach von den 90° des gesamten Startwinkels im Inneren des Rechtecks ab und hast das, was übrig bleibt: den zweiten Winkel β.
Bei bekanntem Winkel α, der durch Ziehen einer Diagonale im Rechteck entsteht, ergibt sich der zweite Winkel an der Diagonale folgendermaßen:
Und diese beiden Winkel sind die einzigen Zahlen, die im Inneren des Rechtecks neben der Diagonalen auftreten. Bei schräg gegenüberliegenden Ecken liegen sie identisch zueinander, bei der nächsten Seite tauschen sie jeweils die Seite.
Jetzt stell Dir vor, Du hast den Auftrag, Bodenbelag für den oben vermessenen Raum zuzuschneiden. Der Boden soll aus zwei Sorten Teppich bestehen, die sich genau in der Diagonalen treffen, also letztendlich aus zwei zusammen gesetzten Dreiecken.
Jetzt möchtest Du für den Raum direkt zwei dreieckige Teppiche bestellen, die diesen direkt ausfüllen, um Verschnitt zu vermeiden. Eine alternative Möglichkeit dazu, die Seitenlängen alle drei zu berechnen, wäre an der Ecke den nötigen "Startwinkel" auszurechnen, in dem Du anfängst, die Teppichrolle zu zerschneiden. Wenn Du das dann gerade weiter schneidest, kommst Du genau in der anderen Ecke an. Jetzt musst Du nur noch berechnen, wie groß der Winkel ist.
Von oben hast Du die Seitenlängen des Rechtecks "Boden" ausgemessen:
Und jetzt hast Du oben eine Formel, in die Du nur beide Werte eintragen und ausrechnen musst:
Würdest Du den Winkel von der anderen Seite anzeichnen wollen, kannst Du den jetzt schnell aus α berechnen:
Und jetzt kannst Du Dir sogar aussuchen, von welcher Seite Du den Winkel bestimmst.
Diagonale Rechteck – Aufgaben und Beispiele
Beispiele aus der Praxis hast Du oben schon einige bekommen, also kannst Du jetzt mal ausprobieren, ob Du die Formeln auch direkt auf mathematische Gleichungen anwenden kannst.
Aufgabe 1
Bestimme die Diagonale d von einem Rechteck mit den Seiten:
Lösung
Oben hast Du die Formel zur Bestimmung der Diagonalen und darin sind die beiden Seitenlängen schnell eingesetzt:
Die Diagonale bestimmt hast Du ja jetzt einmal. Im Folgenden ist sie gegeben, aber eine Seite fehlt.
Aufgabe 2
Berechne die Länge der Seite a in einem Rechteck mit der Seite und der diagonalen Länge .
Lösung
Anders als bei der Addition der Quadrate der beiden Seitenlängen ziehst Du jetzt das Quadrat der Seite vom Quadrat der Diagonalen ab. Die Formel dafür findest Du oben.
Und zum Abschluss noch kannst Du einmal die beiden durch eine Diagonale entstehenden Winkel eines Rechtecks bestimmen:
Aufgabe 3
Bestimme die beiden Winkel α und β für ein Rechteck mit einer Seitenlänge von und einer Diagonale
Lösung
Da die Seite gegeben ist, die an den Winkel α grenzt, nutzt Du hier direkt die Formel mit dem Cosinus, um α zu bestimmen.
Und daraus bestimmt sich der zweite Winkel durch eine einfache Subtraktion:
Diagonale Rechteck - Das Wichtigste
- Rechteck
- Vier Seiten
- Vier Ecken
- Vier rechte Winkel
- Die Diagonale d hat die Länge (Satz des Pythagoras)
- a und b sind die beiden Seitenlängen des Rechtecks
- Der entstehende Winkel α hat die Größe
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen