Grundkonstruktionen

Mobile Features AB

Weißt du wie du mithilfe von Zirkel, Lineal und Bleistift Grundkonstruktionen konstruieren kannst? 

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Grundkonstruktionen Lehrer

  • 9 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 21.03.2022
  • 9 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 21.03.2022
  • 9 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Wir zeigen es dir, los geht‘s!

    Überblick zu Grundkonstruktionen

    Unter Grundkonstruktionen versteht man in der Geometrie Konstruktionen, die im Aufbau komplizierter Konstruktionen beteiligt sind.

    Zu den Grundkonstruktionen gehören folgende Konstruktionen, auf die wir alle nachfolgend im weiteren Artikel eingehen werden.

    • Strecke abtragen

    • Winkel antragen

    • Konstruieren einer Mittelsenkrechte (halbieren einer Strecke)

    • Konstruieren einer Winkelhalbierenden (halbieren eines Winkels)

    • Konstruieren eines Lots

    • Konstruieren einer Parallele

    Solltest du nicht mehr genau wissen, was es mit den Begriffen Strecke, Lot, Parallele oder Strahl auf sich hat, so lies bitte im entsprechenden Kapitel noch einmal nach.

    Grundkonstruktionen: Strecke abtragen

    Gegeben ist eine Strecke , eine Gerade g und ein Punkt C, der auf der geraden g liegt. Gesucht ist jetzt eine Strecke auf g, die die Länge hat mit C als Begrenzungspunkt.

    In der Mathematik schreibt man auch oft C g. Das bedeutet ebenso, dass der Punkt C ein Element der Geraden g ist. Der Punkt C liegt also auf der Geraden g.

    Grundkonstruktionen Strecke und Gerade StudySmarter

    Abbildung 1: Gerade g und Strecke [AB]

    1. Nimm mit deinem Zirkel die Länge der Strecke als Radius ab.

    2. Zeichne einen Kreis um C. Der Radius ist dabei die Länge der Strecke .

    3. Die Schnittpunkte des Kreises mit der Geraden kannst du F und E nennen. Die Strecken und haben beide die selbe Länge, wie die Strecke .

    Grundkonstruktionen Kreis um einen Punkt StudySmarterAbbildung 2: Kreis um Punkt C

    Grundkonstruktionen: Winkel antragen

    Gegeben ist ein Winkel α, ein Strahl (eine Halbgerade) f und ein Punkt A , der auf dem Strahl f liegt. Gesucht ist jetzt der Winkel mit Scheitelpunkt A und Schenkel f in der Größe von α.

    Ein Winkel besteht aus zwei Geraden und einem Punkt, aus dem die beiden Geraden hervorgehen. Die beiden Geraden sind dabei die Schenkel des Winkels und der Anfangspunkt wird Scheitelpunkt genannt.

    Grundkonstruktionen Winkel antragen StudySmarterAbbildung 3: Winkel und Strahl

    1. Zeichne einen Kreis um den Scheitelpunkt von α, mit beliebigem Radius. Markiere die Schnittpunkte I und J.

    Grundkonstruktionen Winkel antragen StudySmarterAbbildung 4: Kreis um den Winkel ziehen

    2. Zeichne einen Kreis um Punkt A mit demselben Radius wie bei dem Kreis um den oberen Punkt beim Winkel α und markiere den Schnittpunkt K.

    Grundkonstruktionen Winkel antragen StudySmarterAbbildung 5: Kreis um Punkt A

    3. Zeichne einen Kreis um K. Der Radius dieses Kreises ist die Länge des Abstands von I und J.

    4. Markiere den Schnittpunkt des Kreises um A und dem Kreis um K. Markiere den Schnittpunkt und

    nenne ihn L.

    Grundkonstruktionen Winkel antragen StudySmarterAbbildung 6: Kreis um Punkt K

    5. Zeichne einen Strahl mit dem Ausgangspunkt A durch L.

    Grundkonstruktionen Winkel antragen StudySmarterAbbildung 7: Strahl mit Ausgangspunkt A

    Grundkonstruktionen: Mittelsenkrechte

    Bevor du eine Mittelsenkrechte konstruierst, schau dir die genaue Definition einer Mittelsenkrechten nochmal an.

    Eine Mittelsenkrechte ist eine Gerade, die eine Strecke in zwei gleich große Teilstrecken teilt und auf dieser senkrecht steht. Dabei dient sie außerdem als eine Symmetrieachse.

    Gegeben ist ein Strecke. Zu dieser Strecke sollst du jetzt die Mittelsenkrechte konstruieren.

    Grundkonstruktionen Strecke Mittelsenkrechte StudySmarterAbbildung 8: Strecke [AB]

    1. Um diese Mittelsenkrechte konstruieren zu können, beginnst du mithilfe deines Zirkels einen Kreis um Punkt A zu zeichnen. Zu beachten ist hierbei, dass der Radius des Kreises um Punkt A größer sein muss als die Hälfte der Strecke .

    Grundkonstruktionen Strecke Hilfskreis Mittelsenkrechte StudySmarterAbbildung 9: Kreis um Punkt A

    2. Im nächsten Schritt zeichnest du einen Kreis um Punkt B. Dabei ist wiederum zu beachten, dass der Kreis um Punkt B den gleichen Radius wie der Kreis um Punkt A haben muss.

    Grundkonstruktionen Strecke Hilfskreis Mittelsenkrechte StudySmarterAbbildung 10: Kreis um Punkt B

    3. Wenn du diese beiden Kreise konstruiert hast, findest du zwei Punkte, an denen sich die beiden Kreise schneiden. Durch diese Schnittpunkte ziehst du nun mithilfe deines Lineals eine Gerade. Diese Gerade ist deine Mittelsenkrechte.

    Grundkonstruktionen Gerade durch Schnittpunkte Mittelsenkrechte StudySmarterAbbildung 11: Gerade durch die Schnittpunkte

    Eine Winkelhalbierende konstruieren

    Bevor du eine Winkelhalbierende konstruierst, schau dir auch hier die genaue Definition einer Winkelhalbierenden nochmal an.

    Eine Winkelhalbierende ist eine Halbgerade, die durch den Scheitelpunkt eines Winkels verläuft und das Winkelfeld in zwei deckungsgleiche Teile teilt.

    Gegeben ist ein Winkel α, zu dem du die zugehörige Winkelhalbierende konstruieren sollst.

    Grundkonstruktionen Winkelhalbierende konstruieren Winkel StudySmarterAbbildung 12: Winkel Alpha

    1. Als Erstes zeichnest du einen Kreis um deinen Winkel. Dafür stichst du deinen Zirkel in den Scheitelpunkt des Winkels ein. Die beiden Schnittpunkte des Kreises mit den Schenkeln des Winkels werden mit A und B bezeichnet.

    Grundkonstruktionen Winkel und Hilfskreis Winkelhalbierende konstruieren StudySmarterAbbildung 13: Winkel und Hilfskreis

    2. Im nächsten Schritt konstruierst du eine Mittelsenkrechte auf die Strecke und damit Winkelhalbierende von . Das geht wie folgt:

    2.1 Zeichne einen Kreis um A mit einem Radius, der größer als die Hälfte der Strecke ist.

    2.2 Wiederhole den vorherigen Schritt an Punkt B.

    Grundkonstruktionen Kreis um einen Punkt Winkelhalbierende konstruieren StudySmarterAbbildung 14: Kreise um die Punkte A und B

    3. Zeichne eine Gerade durch die Schnittpunkte der Kreis um A und B. Diese Gerade ist die gesuchte Winkelhalbierende.

    Grundkonstruktionen Winkelhalbierende durch Schnittpunkte Winkelhalbierende konstruieren StudySmarterAbbildung 15: Winkelhalbierende durch Schnittpunkte

    Grundkonstruktionen: Lot

    Mach dir zunächst nochmal klar, was mathematisch unter einem Lot verstanden wird.

    Ein Lot ist eine Gerade, die auf einer gegebenen Gerade senkrecht steht.

    Lot errichten

    Gegeben ist eine Gerade f und ein Punkt A der auf der Geraden f liegt. Du hast jetzt die Aufgabe ein Lot auf der Geraden f durch Punkt A zu errichten.

    Grundkonstruktionen Lot errichten StudySmarter

    Abbildung 16: Gerade f und Punkt A

    1. Im ersten Schritt zeichnest du einen Kreis um Punkt A. Den Radius kannst du beliebig groß wählen. Die beiden Schnittpunkte des Kreises mit Gerade f werden mit C und D benannt.

    Grundkonstruktionen Lot errichten StudySmarterAbbildung 17: Kreis um Punkt A

    2. Als Nächstes wird die Mittelsenkrechte der Punkte C und D konstruiert. Dazu machst du folgende Zwischenschritte:

    2.1 Zeichne einen Kreis um C mit einem Radius, der größer als die Hälfte der Strecke ist.

    2.2 Wiederhole den vorherigen Schritt an Punkt D.

    Grundkonstruktionen Lot errichten StudySmarterAbbildung 18: Kreise um die Schnittpunkte C und D

    3. Zeichne eine Gerade durch die Schnittpunkte der Kreise um C und D. Diese Gerade ist das Lot auf Gerade f durch Punkt A.

    Grundkonstruktionen Lot errichten StudySmarterAbbildung 19: Mittelsenkrechte errichten

    Lot fällen

    Gegeben ist wieder eine Gerade f und ein Punkt C. Bei dieser Aufgabe befindet sich der Punkt C jedoch nicht auf der Geraden f. Du sollst jetzt ein Lot auf Gerade f durch Punkt C fällen.

    Grundkonstruktionen Gerade und Punkt Lot fällen StudySmarterAbbildung 20: Gerade f und Punkt C

    1. Du beginnst damit einen Kreis um Punkt C zu zeichnen. Der Kreis muss groß genug sein, damit er f in zwei Punkten schneidet. Diese beiden Schnittpunkte werden E und D benannt.

    Grundkonstruktionen Lot fällen StudySmarterAbbildung 21: Kreis um Punkt C

    2. Als Nächstes wird erneut die Mittelsenkrechte der Punkte E und D konstruiert.

    2.1 Zeichne dafür einen Kreis um E mit einem Radius, der größer als die Hälfte der Strecke ist.

    2.2 Wiederhole den vorherigen Schritt an Punkt D.

    Grundkonstruktionen Lot fällen StudySmarterAbbildung 22: Kreise um die Punkte E und D

    3. Zeichne im letzten Schritt eine Gerade durch die Schnittpunkte der Kreise um E und D. Diese Gerade ist das Lot auf Gerade g durch den Punkt C.

    Grundkonstruktionen Lot fällen StudySmarterAbbildung 23: Mittelsenkrechte durch die Schnittpunkte

    Eine Parallele konstruieren

    Schaue dir auch hier nochmal die Definition einer Parallelen in der Mathematik an, bevor du diese konstruierst.

    Zwei Geraden sind parallel zueinander, wenn sie an jedem Punkt den gleichen Abstand zueinander haben.

    Parallele durch einen gegebenen Punkt zu einer Geraden konstruieren

    Gegeben ist ein Punkt A und eine Gerade f. Du sollst jetzt eine Gerade durch Punkt A konstruieren, die parallel zur Geraden f verläuft.

    Grundkonstruktionen Gerade und Punkt Parallele konstruieren StudySmarterAbbildung 24: Gerade f und Punkt A

    1. Zeichne einen Kreis um Punkt A. Der Kreis muss groß genug sein, dass er die Gerade f in zwei Punkten schneidet. Diese sind hier als Punkte E und D markiert.

    Grundkonstruktionen Parallele konstruieren StudySmarterAbbildung 25: Kreis um Punkt A

    2. Zeichne einen weiteren Kreis um Punkt E. Der Kreis muss denselben Radius haben wie zuvor. Der Kreis schneidet die Gerade f in den Punkten F und G.

    Grundkonstruktionen Parallele konstruieren StudySmarterAbbildung 26: Kreis um Punkt E

    3. Zeichne einen dritten Kreis. Diesmal ist der Mittelpunkt des Kreises der Punkt G. Der Radius bleibt weiterhin derselbe.

    Grundkonstruktionen Parallele konstruieren StudySmarterAbbildung 27: Kreis um Punkt G

    4. Im letzten Schritt zeichnest du eine Gerade durch den Schnittpunkt, von Kreis 1 (K 1) und Kreis 3 (K 3), zu Punkt A.

    Grundkonstruktionen Gerade und Parallele durch einen Punkt Parallele konstruieren StudySmarterAbbildung 28: Gerade durch den Schnittpunkt und Punkt A

    Parallele in einem gegebenen Abstand konstruieren

    Gegeben ist wieder eine Gerade g und ein Abstand f. Gesucht ist jetzt eine Gerade, die im Abstand f parallel zu g verläuft. Das f ist dabei die Länge des Abstands, in dem die zweite Parallele zur Geraden g gezeichnet werden soll.

    Grundkonstruktionen Parallele konstruieren StudySmarterAbbildung 29: Gerade und Abstand f

    1. Zeichne zwei beliebige Punkte auf g ein. Die Punkte heißen A und B und sollten nicht zu nahe beieinander liegen.

    2. Ziehe zwei Kreise um A und B. Den Radius kannst du frei wählen, er muss aber bei beiden Kreisen derselbe sein und zudem dürfen sich die beiden Kreise nicht schneiden.

    Grundkonstruktionen Abstand Parallele konstruieren StudySmarterAbbildung 30: Kreise um die Punkte A und B

    3. Benenne jetzt alle Punkte an denen die beiden Kreise die Gerade g schneiden. Die vier Punkte kannst du C, D, E und F nennen.

    Grundkonstruktionen Parallele konstruieren StudySmarterAbbildung 31: Benennung der Schnittpunkte

    4. Im nächsten Schritt ziehst du jetzt um alle vier Schnittpunkte (C, D, E und F) einen Kreis. Wichtig ist dabei, dass alle Kreise den gleichen Radius haben und der Radius größer ist als die Hälfte der Strecke .

    Grundkonstruktionen Hilfskreise Parallele im Abstand zeichnen Parallele konstruieren StudySmarterAbbildung 32: Kreise um die Punkte C, D, E und F

    5. Zeichne zwei Geraden durch die Schnittpunkte von den Kreisen durch C und D und durch die Kreise von E und F.

    Grundkonstruktionen Hilfskreise Parallele im Abstand zeichnen Parallele konstruieren StudySmarterAbbildung 33: Geraden durch die Schnittpunkte der Kreise

    6. Jetzt zeichnest du zwei weitere Kreise. Diese Kreise haben den Radius f und werden um A und B gezeichnet.

    Grundkonstruktionen Hilfskreise Parallele im Abstand zeichnen Parallele konstruieren StudySmarterAbbildung 34: Kreise mit Radius f um Punkt A und B

    7. Im letzten Schritt verbindest du die Punkte, an denen die Geraden aus Schritt 5 die beiden letzten Kreise schneiden. Die beiden schwarz markierten Linien sind dann die gesuchten Parallelen im Abstand f zur

    Gerade g.

    Grundkonstruktionen Parallele im Abstand zeichnen Parallele konstruieren StudySmarterAbbildung 35: Geraden durch die Schnittpunkte

    Grundkonstruktionen - Das Wichtigste auf einen Blick

    • Mithilfe von Zirkel, Lineal und Stift lassen sich Grundkonstruktionen zeichnen.
    • Grundkonstruktionen sind:
      • Strecke
      • Winkel
      • Mittelsenkrechte
      • Winkelhalbierende
      • Lot (errichten und fällen)
      • Parallele (durch Punkt oder Abstand)
    Lerne schneller mit den 0 Karteikarten zu Grundkonstruktionen

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Grundkonstruktionen
    Häufig gestellte Fragen zum Thema Grundkonstruktionen

    Wie konstruiert man eine Senkrechte?

    Um eine Senkrechte zu konstruieren, legt man zunächst zwei beliebige Punkte auf der Gerade fest. Anschließend konstruierst du zwei Kreise um die gewählten Punkte, die sich schneiden. Die zwei Punkte, in denen sich die Kreise schneiden, verbindest du nun. Jetzt hast du die Senkrechte konstruiert.

    Was ist eine Grundkonstruktion?

    Unter einer Grundkonstruktion in der Geometrie versteht man das Errichten einer Mittelsenkrechte, das Konstruieren einer Winkelhalbierenden, das Errichten der Senkrechten zu einer Geraden in einem Punkt auf der Gerade und das Fällen eines Lots von einem Punkt auf eine Gerade. Alle diese Konstruktionen lassen sich mit einem Zirkel, einem Lineal und einem Stift ausführen.

    Wie zeichnet man ein Lot?

    Zeichne einen Kreis mit gleichem Radius, um zwei beliebige Punkte auf der Geraden. Der Radius der beiden Kreise sollte so groß sein, dass sich die beiden Kreise schneiden. Zeichne anschließend eine Gerade durch die beiden Schnittpunkte der zwei Kreise. Diese Gerade ist das Lot.

    Wie kann man einen Winkel halbieren?

    Zeichne mit deinem Zirkel einen Kreis um den Scheitelpunkt des Winkels. Markiere anschließend die Schnittpunkte des Kreises mit den Schenkeln des Winkels. Zeichne um die beiden markierten Punkte jeweils einen Kreis. Beide Kreise haben den gleichen Radius. Zuletzt ziehst du eine Gerade durch die beiden Schnittpunkte der Kreise und teilst so den Winkel in zwei deckungsgleiche Teile.

    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 9 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren