In dieser Erklärung geht es viel um Vektoren im dreidimensionalen Raum und wie Du deren Beträge berechnest. Solltest Du Dir in diesen Themen noch nicht ganz sicher sein, dann schau Dir doch vorher die Erklärungen Betrag eines Vektors und Richtungsvektor an.
Kugelgleichung – aufstellen Mittelpunkt: Radius
Eine Kugel wird in der analytischen Geometrie als eine Menge aller Punkte des Raumes beschrieben, die von einem gegebenen Mittelpunkt M denselben Abstand (Radius) \(r\) haben.
Abb. 1: Kugel im dreidimensionalem Raum
Allgemein gilt folgende Definition:
Die Definition der Kugel im dreidimensionalen Raum lautet:
\[{\color{bl}k}[{\color{r}M};{\color{gr}r}]=\{{\color{li}X}|{\color{gr}\overline{MX}}={\color{gr}r}\} \]
Dabei stehen \({\color{bl}k}\) für die Kugel, \({\color{r}M}\) für den Mittelpunkt und \( {\color{gr}r} \) und \({\color{gr}\overline{MX}} \) für den Radius/ den Abstand zwischen \({\color{r}M} \) und einem beliebigen Punkt \({\color{li}X}\).
Aus dieser Grundkenntnis leiten sich dann die folgenden Kugelgleichungen ab.
Kugelgleichung – Formel
Die Kugelgleichung wird also mithilfe des Mittelpunktes und des Radius aufgestellt, aber was sind die einzelnen Formen, die in der Einleitung erwähnt worden sind und wie stellst Du sie selbst auf? In diesem Abschnitt wird die vektorielle Gleichung und die Parameterform erklärt und wie Du von der einen in die andere übergehst.
Kugelgleichung Vektorform
Die Vektoren-Gleichung, auch vektorielle Gleichung der Kugelgleichung ist am simpelsten, wenn der Mittelpunkt auf dem Koordinatenursprung sitzt. In dem Fall ist jeder Punkt \({\color{li}X}\) so weit vom Mittelpunkt entfernt, wie der Betrag seines Ortsvektors \({\color{li}\vec{x}}\). Es gilt also:
\[\left| {\color{li}\vec{x}} \right| ={\color{gr}r} \quad \text{oder auch} \quad {\left| {\color{li}\vec{x}} \right|}^2 ={{\color{gr}r}}^2\]
Was, aber, wenn der Mittelpunkt der Kugel nicht auf dem Koordinatenursprung liegt? In diesem Fall muss der Radius erst bestimmt werden. Dafür bildest Du die Differenz zwischen dem Ortsvektor von \({\color{r}M}\) und dem Ortsvektor von \({\color{li}X}\):
\[\left|{\color{gr}\overline{MX}}\right|=| {\color{li}\vec{x}}-{\color{r}\vec{m}}|={\color{gr}r} \quad \text{oder auch} \quad {\left|{\color{gr}\overline{MX}}\right|}^2={| {\color{li}\vec{x}}-{\color{r}\vec{m}}|}^2={{\color{gr}r}}^2\]
Dadurch, dass Du hier den Mittelpunkt in die Rechnung gebracht hast, kannst Du darauf auch wieder zurückgreifen, falls er Dir nicht gegeben sein sollte.
Rechnerisch sieht das, dann später wie folgt aus:
Aufgabe 1
Stelle die vektorielle Kugelgleichung auf für eine Kugel mit dem Mittelpunkt \(M\,(1|3|2)\) und dem Radius \(r=3\).
Lösung
Setzte die Worte in die Formel ein:
\begin{align} {\left| \vec{x}- \vec{m} \right|}^2=r^2\\[0.2cm] {\left| \begin{pmatrix} x \\ y \\ z\end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2\end{pmatrix}\right|}^2 =9 \end{align}
Die vektorielle Gleichung hast Du so schon fertig aufgestellt.
Kugelgleichung Koordinatenform
Die Koordinatenform kannst Du direkt aus der vektoriellen Kugelgleichung ableiten, dafür schreibst Du Dir zuerst die vektorielle Gleichung in Vektorschreibweise auf. Seien also \({\color{li}\vec{x}}={ \color{li} \begin{pmatrix} x\\ y \\ z \end{pmatrix}}\) und \({\color{r}\vec{m}}={ \color{r} \begin{pmatrix} c\\ d \\ e \end{pmatrix}}\) gegeben, dann gilt:
\begin{align}{|{\color{li} \vec{x}}-{\color{r} \vec{m}}|}^2&={{\color{gr}r}}^2\\[0.2cm]\Rightarrow {\left| {\color{li}\begin{pmatrix} x \\ y \\ z \end{pmatrix}}-{\color{r} \begin{pmatrix} c \\ d \\ e \end{pmatrix}} \right|}^2&={{\color{gr}r}}^2\\[0.2cm]\left({\sqrt{(x-c)^2+(y-d)^2+(z-e)^2}}\right)^2&={{\color{gr}r}}^2\\[0.2 cm] {(x-c)}^2+(y-d)^2 +(z-e)^2&={{\color{gr}r}}^2\\\end{align}
Falls Dir diese Rechnung Kopfzerbrechen bereitet, schau mal bei "Betrag eines Vektors" vorbei.
Beim Ausrechnen des Terms hat sich hier die Wurzel durch das Quadrieren weggekürzt und übrig bleibt der innere Teil als Koordinatenform für die Kugelgleichung.
Kannst Du Dir darunter noch nichts vorstellen? Dann schau Dir doch das folgende Beispiel an:
Aufgabe 2
Wandle die Vektoren-Gleichung aus Aufgabe 1 in ihre Koordinatenform um:
Lösung
Rechne dafür den Betrag der Vektoren-Gleichung aus:
\begin{align} {\left| \begin{pmatrix} x \\ y \\ z\end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2\end{pmatrix}\right|}^2 =9\\\left({\sqrt{(x-1)^2+(y-3)^2+(z-2)^2}}\right)^2={{\color{gr}r}}^2\\[0.2 cm] {(x-1)}^2+(y-3)^2+(z-2)^2={{\color{gr}r}}^2 \end{align}
Und schon hast Du die Koordinatenform der Kugel aufgestellt.
Kugelgleichung Mittelpunkt bestimmen
Das Praktische an der Parameterform ist, dass Du aus Ihr sowohl Punkte auf der Kugel ablesen, als auch Ihren Mittelpunkt schnell erkennen kannst.
Aufgabe 3
Für eine Kugel ist die Gleichung \(x^2+y^2+z^2 +6x-2y-2z-5=0\) gegeben. Forme sie zur Parameterform um und bestimme den Mittelpunkt der Kugel.
Lösung
1. Schritt:
Stelle als Erstes die Gleichung so um, dass die einzelnen Unbekannten zusammen in einer Klammer stehen und der feste Wert hinter dem Gleichheitszeichen:
\[(x^2+6x)+(y^2-2y)+(z^2-2z)=5\]
2. Schritt:
Führe jetzt die quadratische Ergänzung durch, um die Koordinatengleichung zu erhalten:
\begin{align} (x^2+6x)+(y^2-2y)+(z^2-2y)&=5\\ (x+3)^2+(y-1)^2+(z-1)^2&=5+9+1+1\\ (x+3)^2+(y-1)^2+(z-1)^2&=16 \end{align}
Aus dieser Koordinatengleichung kannst Du jetzt ablesen, dass der Mittelpunkt der Kugel der Punkt \(M\,(-6|1|1)\) ist
Kugelgleichung – Parameterform
Die Parameterform hat wiederum einen ganz anderen Ansatz. In dieser Form wird ein Punkt auf der Kugel mithilfe des Radius und zwei Winkel angegeben. Das Zentrum der Kugel liegt dabei wieder entweder im Koordinatenursprung oder in dem Mittelpunkt \(M\). Eine zur x-y-Ebene senkrechte Gerade, Polachse genannt, geht durch dieses Zentrum und gibt so die Polrichtung an. Zu dieser Polachse liegt wiederum eine senkrechte Ebene, die gleichzeitig auch durch den Mittelpunkt verläuft, diese Ebene wird Äquatorebene genannt.
Abb. 2: Winkel der Parameterform
Charakterisiert wird ein beliebiger Punkt P durch folgende Werte:
- Der Abstand vom Mittelpunkt \(M\) zum Punkt \(P\) auf der Kugel entspricht dem Radius \(r\)
- Der Polarwinkel \(\theta\) wird zwischen der Strecke \(\overline{MP}\) und der oberen Hälfte der Polachse aufgespannt. Dabei kann dieser Winkel nur Werte zwischen \(0\) und \(\pi\) (\( 0^{\circ}\) bis \(180^{\circ}\)) annehmen und legt eine Kreislinie auf der Kugeloberfläche fest.
- Der Azimutwinkel \(\phi\) wird zwischen der Polrichtung und der Projektion der Strecke \(\overline{MP}\) auf der Äquatorebene aufgespannt. Dieser Winkel wird jedoch zwischen \(0\) und \(2 \pi\) oder \(-\pi\) und \(\pi\) gemessen.
Zusammen ergeben diese Punkte dann die Kugelkoordinaten \(P\,(r,\theta,\phi)\)
Willst Du diese doch in kartesischen Koordinaten erhalten, dann kannst Du folgende Rechnungen durchführen:
\begin{align} x & = r\cdot \sin{\theta} \cdot \cos{\phi} \\ y & = r \cdot \sin{\theta} \cdot \sin{\phi} \\ z & = r \cdot \cos{\theta} \end{align}
Zur Verdeutlichung kannst Du Dir folgendes Beispiel ansehen:
Aufgabe 4
Rechne die Kugelkoordinaten \(P\,(8|20^{\circ}|33^{\circ})\)in das kartesische Koordinatensystem um.
Lösung
Setzte die gegebenen Werte in die Gleichungen ein und rechne sie aus:
\begin{align}x&=r \cdot \sin{\theta}\cdot \cos{\phi}\\x&=8 \cdot \sin({20^{\circ}}) \cdot \cos({33^{\circ}})\\x&= \text{2,29}\\\\y&=r \cdot \sin{\theta} \cdot \sin{\phi}\\y&=8 \cdot \sin({20^{\circ}}) \cdot \sin({33^{\circ}})\\y&= \text{1,49}\\\\z&=r \cdot \cos{\theta}\\z&=8 \cdot \cos({20^{\circ}})\\z&= \text{7,52}\end{align}
Die Kartesischen Koordinaten lauten: \(P\,(\text{2,29}|\text{1,49}|\text{7,52})\)
Kugelgleichung – Aufgaben
In diesem Abschnitt findest Du zur Übung ein paar Aufgaben zu den obigen Themen:
Aufgabe 5
Stelle die vektorielle Kugelgleichung auf für eine Kugel mit dem Mittelpunkt \(M\,(2|5|3)\) und dem Radius \(r=4\).
Lösung
Setze die Werte in die Formel ein:
\begin{align} {\left| \vec{x}- \vec{m} \right|}^2=r^2\\[0.2cm] {\left| \begin{pmatrix} x \\ y \\ z\end{pmatrix} - \begin{pmatrix} 2 \\ 5 \\ 3\end{pmatrix}\right|}^2 =16 \end{align}
Die vektorielle Gleichung hast Du so schon fertig aufgestellt.
Aufgabe 6
Stelle die gegebene Gleichung \(x^2+y^2+z^2-4x+2y-8z-4=0\) zur Parameterform um und bestimme den Mittelpunkt \(M\).
Lösung
1. Schritt:
Stelle als Erstes wieder die Gleichung um:
\begin{align}x^2+y^2+z^2-4x+2y-8z-4&=0&&|+4\\(x^2-4x)+(y^2+2y)+(z^2-8z)&=4\\\end{align}
2. Schritt:
Führe jetzt die quadratische Ergänzung durch:\begin{align}(x^2-4x)+(y^2+2y)+(z^2-8z)&=4\\(x-2)^2+(y+1y)^2+(z-4z)^2&=4+4+1+16\\(x-2)^2+(y+1y)^2+(z-4z)^2&=25\end{align}
Der Mittelpunkt liegt damit bei \(M\,(2|-1|4)\).
Aufgabe 7
Rechne die folgende Kugelkoordinaten in die kartesische Koordinaten um:
\[P\,(10|50^{\circ}|11^{\circ})\]
Lösung
1. Schritt:
Setzte die gegebenen Werte in die Gleichungen ein und rechne sie aus:
\begin{align}x&=r \cdot \sin{\theta}\cdot \cos{\phi}\\x&=10 \cdot \sin({50^{\circ}}) \cdot \cos({11^{\circ}})\\x&= \text{7,52}\\\\y&=r \cdot \sin{\theta} \cdot \sin{\phi}\\y&=10 \cdot \sin({50^{\circ}}) \cdot \sin({11^{\circ}})\\y&= \text{1,46}\\\\z&=r \cdot \cos{\theta}\\z&=10 \cdot \cos({50^{\circ}})\\z&= \text{6,43}\end{align}
Die Kartesischen Koordinaten lauten: \(P\,(\text{7,52}|\text{1,46}|\text{6,43})\)
Kugelgleichung – Das Wichtigste
- Eine Kugel wird in der analytischen Geometrie als eine Menge aller Punkte des Raumes beschrieben, die von einem gegebenen Mittelpunkt M denselben Abstand (Radius) r haben.
- Die Definition der Kugel im dreidimensionalen Raum lautet:\[{\color{bl}k}[{\color{r}M};{\color{gr}r}]=\{{\color{li}X}|{\color{gr}\overline{MX}}={\color{gr}r}\} \]Dabei stehen \({\color{bl}k}\) für die Kugel, \({\color{r}M}\) für den Mittelpunkt und \( {\color{gr}r} \) und \({\color{gr}\overline{MX}} \) für den Radius/ den Abstand zwischen \({\color{r}M} \) und einem beliebigen Punkt \({\color{li}X}\)
Die Koordinatenform kannst Du direkt aus der vektoriellen Kugelgleichung herleiten:\[{(x-c)}^2+(y-d)^2 +(z-e)^2={{\color{gr}r}}^2 \]Das Praktische an der Parameterform ist, dass Du aus Ihr sowohl Punkte auf der Kugel ablesen als auch Ihren Mittelpunkt schnell erkennen kannst.
Charakterisiert wird ein beliebiger Punkt P in einer Parameterform durch folgende Werte:
- Der Abstand vom Mittelpunkt \(M\) zum Punkt \(P\) auf der Kugel entspricht dem Radius \(r\)
- Der Polarwinkel \(\theta\) wird zwischen der Strecke \(\overline{MP}\) und der oberen Hälfte der Polachse aufgespannt. Dabei kann dieser Winkel nur Werte zwischen 0 und \(\pi\) (\( 0^{\circ}\) bis \(180^{\circ}\)) annehmen und legt eine Kreislinie auf der Kugeloberfläche fest.
- Der Azimutwinkel \(\phi\) wird zwischen der Polrichtung und der Projektion der Strecke \(\overline{MP}\) auf der Äquatorebene aufgespannt. Dieser Winkel wird jedoch zwischen 0 und \(2 \pi\) oder \(-\pi\) und \(\pi\) gemessen.
- Zusammen ergeben diese Punkte dann die Kugelkoordinaten \(P\,(r,\theta,\phi)\)
- Willst Du diese doch in kartesischen Koordinaten erhalten, dann kannst Du folgende Rechnungen durchführen:\begin{align}x=r\cdot \sin{\theta} \cdot \cos{\phi} \\ y=r \cdot \sin{\theta} \cdot \sin{\phi} \\ z=r \cdot \cos{\theta} \end{align}
Nachweise
- Helmut Fischer(2017). Mathematik für Physiker Band 3. Springer Spektrum
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen