Lot Mathe

Mobile Features AB

In diesem Artikel erfährst du alles, was du zu dem Thema Lot wissen musst. Das Thema Lot ist inhaltlich dem Themengebiet Geometrie im Fach Mathematik zuzuordnen.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Lot Mathe Lehrer

  • 8 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • 8 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 01.01.1970
  • 8 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Was ist ein Lot in Mathe?

    Ein Lot in Mathe ist eine Gerade bzw. Strecke l, die senkrecht zu einer anderen Geraden bzw. Strecke g verläuft. Mit anderen Worten: Wenn l orthogonal zu g liegt, ist l das Lot von g.

    Diese Annahme wird mathematisch folgendermaßen ausgedrückt:

    Das bedeutet, dass zwischen den beiden Geraden bzw. Strecken l und g ein rechter Winkel liegt.

    Abhängig davon, ob es sich beim Lot um eine Strecke oder Gerade handelt, wird das Lot auch Lotstrecke oder Lotgerade genannt.

    Ein Punkt, den du im Zusammenhang mit dem Lot unbedingt kennen solltest, ist der Lotfußpunkt L. Der Lotfußpunkt L ist der Punkt, an dem das Lot die Strecke bzw. die Gerade g schneidet.

    In der folgenden Abbildung siehst du eine Gerade g und ihre Lotgerade l. Bei dem Punkt L, der sich am Schnittpunkt der beiden Geraden befindet, handelt es sich um den Lotfußpunkt.

    Beim Einzeichnen eines Lots spricht man entweder davon ein Lot zu fällen oder ein Lot zu errichten.

    Der Unterschied dieser beiden Methoden liegt darin, dass beim Fällen eines Lots der Punkt P, durch den das Lot verlaufen soll, nicht auf der Geraden g liegt.

    Beim Errichten eines Lots hingegen ist der Punkt P, von dem aus das Lot eingezeichnet werden soll, gleichzeitig der Lotfußpunkt L.

    Wie man ein Lot fällt oder errichtet und welche Hilfsmittel man dazu nutzen kann, erfährst du in den nächsten beiden Abschnitten.

    Lot fällen - Vorgehensweise

    Zunächst lernst du wie man vorgeht, wenn man ein Lot fällen möchte.

    Um ein Lot einer Geraden g zu fällen, benötigst du außer der Geraden g noch einen Punkt P, der nicht auf der Geraden g liegt. Theoretisch kannst du von jedem Punkt P, der nicht auf der Geraden g liegt, ein Lot fällen.

    Die Ausgangssituation vor dem Fällen des Lots sieht zum Beispiel so aus:

    Um ein Lot zu fällen, musst du denjenigen Punkt auf der Geraden g finden, der den kleinsten Abstand zum Punkt P hat. Bei diesem Punkt handelt es sich um den Lotfußpunkt L.

    Es gibt zwei Möglichkeiten, wie du ausgehend von dieser Situation ein Lot fällen kannst: mithilfe eines Geodreiecks oder mithilfe eines Zirkels und einem normalen Lineal. Die Vorgehensweisen für diese beiden Verfahren lernst du im Folgenden im Detail kennen.

    Lot fällen - Vorgehensweise mit Geodreieck

    Die Verwendung eines Geodreiecks ist die schnellste und effizienteste Möglichkeit ein Lot zu fällen. Sofern du ein Geodreieck zur Verfügung hast und dieses auch nutzen darfst, solltest du deshalb auf diese Methode zurückgreifen.

    Um ein Lot mit einem Geodreieck zu fällen, platzierst du das Geodreieck zunächst so, dass die 90°-Winkelhilfslinie genau auf der Geraden g liegt. Gleichzeitig muss das Geodreieck so positioniert sein, dass der Punkt P, durch den das Lot l verlaufen soll, direkt an der Grundkante des Geodreiecks liegt.

    Danach zeichnest du mit einem Stift ausgehend vom Punkt P bis hin zur Geraden g weitere Gerade entlang der Grundkante deines Geodreiecks. Die dabei entstehende Gerade ist das Lot l. Markiere den Punkt, an dem sich das Lot und die Gerade schneiden. Dieser Punkt ist der Lotfußpunkt L.

    Abschließend markierst du einen Winkel zwischen der Geraden g und seinem Lot l mit einem Punkt als rechten Winkel.

    Wenn du das gemacht hast, sieht deine Zeichnung so aus:

    Lot fällen - Vorgehensweise mit Zirkel

    Nicht immer hat man ein Geodreieck zur Verfügung und manchmal ist es sogar in einer Prüfung nicht als Hilfsmittel zugelassen. Wenn du dennoch eine Möglichkeit suchst, ein Lot zu fällen, bist du in diesem Abschnitt genau richtig. In diesem Fall benötigst du nur einen Zirkel und ein normales Lineal.

    Um ein Lot mit einem Zirkel zu fällen, zeichnest du zunächst einmal mit dem Zirkel einen Kreis um den Punkt P. Dabei ist es wichtig, dass du darauf achtest, dass der Radius so groß ist, dass der eingezeichnete Kreis die Gerade g an genau zwei Punkten schneidet.

    Markiere die beiden Punkte, an denen sich der Kreis und die Gerade g schneiden.

    Deine Zeichnung sieht nun in etwa so aus:

    Im nächsten Schritt zeichnest du zwei weitere Kreise ein. Diese haben den Punkt A bzw. den Punkt B als Mittelpunkt. Achte bei der Wahl des Radius dieser beiden Kreise darauf, dass er bei den beiden Kreisen die gleiche Größe hat und zudem so groß ist, dass sie sich an zwei Punkten schneiden. Diese Schnittpunkte nennst du Punkt A und Punkt B.

    Abschließend musst du nur noch die beiden Punkte C und D miteinander verbinden. Bei der dabei entstehenden Geraden handelt es sich um das Lot l. Der Punkt, an dem sich die Gerade g und das Lot l schneiden, ist der Lotfußpunkt.

    Markiere zum Schluss noch einen Winkel zwischen der Geraden g und seinem Lot l mit einem Punkt als rechten Winkel.

    Super! Du hast nun zwei Möglichkeiten kennengelernt, wie man ein Lot fällt. Als Nächstes erfährst du, wie man ein Lot errichtet.

    Lot errichten - Vorgehensweise

    Um ein Lot einer Geraden g zu errichten, benötigst du außer der Geraden g noch einen Punkt P, der genau auf der Geraden g liegt. Theoretisch kannst du ausgehend von jedem Punkt auf der Geraden g ein Lot errichten. Beim Errichten eines Lots ist dieser Punkt immer mit dem Lotfußpunkt gleichzusetzen.

    Die Ausgangssituation vor dem Errichten des Lots sieht zum Beispiel so aus:

    Es gibt zwei Möglichkeiten, wie du von dieser Ausgangssituation ein Lot errichten kannst: mit einem Geodreieck oder mit einem Zirkel und einem normalen Lineal. Die Vorgehensweisen für diese beiden Verfahren lernst du im Folgenden im Detail kennen.

    Lot errichten - Vorgehensweise mit Geodreieck

    Um ein Lot mit einem Geodreieck zu errichten, platzierst du das Geodreieck zunächst so, dass die 90°-Winkelhilfslinie genau auf der Geraden g liegt. Gleichzeitig muss das Geodreieck so positioniert sein, dass der Punkt P, von dem aus das Lot l errichtet werden soll, genau am Nullpunkt des Geodreiecks liegt.

    Danach zeichnest du mit einem Stift ausgehend vom Punkt P entlang der Grundkante deines Geodreiecks. Die dabei entstehende Gerade ist das Lot l. Abschließend markierst du einen Winkel zwischen der Geraden g und seinem Lot l mit einem Punkt als rechten Winkel.

    Das Endergebnis sieht dann folgendermaßen aus:

    Lot errichten - Vorgehensweise mit Zirkel

    Um ein Lot der Geraden g ausgehend vom Punkt P mit einem Zirkel zu errichten, zeichnest du zunächst einen Kreis mit beliebigem Radius, der den Punkt P zum Mittelpunkt hat. Der Kreis schneidet die Gerade g an zwei Punkte: am Punkt A und Punkt B.

    Die Zeichnung sieht an dieser Stelle dann folgendermaßen aus:

    Anschließend zeichnest du zwei weitere Kreise ein. Diese haben den Punkt A und Punkt B zum Mittelpunkt und haben den gleichen Radius. Achte bei der Radiuswahl darauf, dass der Radius größer ist als die Hälfte der Strecke zwischen den Punkt A und Punkt B. Für den Radius r gilt demnach:

    Auch diese beiden Kreise schneiden sich an zwei Punkten. Benenne diese Schnittpunkte als Punkt C und Punkt D. Nun sollte deine Zeichnung in etwa so aussehen:

    Abschließend musst du nur noch die beiden Punkte C und D miteinander verbinden. Bei der dabei entstehenden Geraden handelt es sich um das Lot l. Markiere zum Schluss noch einen Winkel zwischen der Geraden g und seinem Lot l mit einem Punkt als rechten Winkel.

    Das finale Ergebnis sieht dann wie folgt aus:

    Toll gemacht! Du bist nun fit im Thema Lot in Mathe!

    Lot Mathe - Das Wichtigste auf einen Blick

    • Ein Lot l ist eine Strecke bzw. Gerade, die senkrecht zu einer anderen Geraden bzw. Strecke g verläuft.
    • Zwischen den beiden Strecken bzw. Geraden g und l liegt ein rechter Winkel.
    • Der Lotfußpunkt ist der Punkt, an dem das Lot die Strecke bzw. Gerade g schneidet.
    • Das Zeichnen eines Lotes nennt man Lot fällen oder Lot errichten.
    • Ein Lot kann entweder mit einem Geodreieck oder mit einem Zirkel und Lineal konstruiert werden.
    Lerne schneller mit den 0 Karteikarten zu Lot Mathe

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Lot Mathe
    Häufig gestellte Fragen zum Thema Lot Mathe

    Was ist ein Lot in Mathe?

    Ein Lot in der Mathematik ist eine Gerade bzw. Strecke l, die senkrecht zu einer anderen Geraden bzw. Strecke g verläuft. Zwischen den beiden Strecken bzw. Geraden liegt demnach ein rechter Winkel. 

    Wie zeichnet man ein Lot Mathe?

    Um ein Lot zu zeichnen muss man entweder ein Lot fällen oder ein Lot errichten. 

    Ein Lot einer Geraden g wird errichtet, indem man ausgehend vom Lotfußpunkt L eine senkrechte Gerade zur Geraden g zeichnet. 

    Ein Lot einer Geraden g wird gefällt, indem man einen Punkt P mit der Geraden g durch eine weitere Gerade verbindet, die senkrecht zur Geraden g verläuft. 

    Wie berechnet man den Lotfußpunkt?

    Der Lotfußpunkt L ist der Punkt, an dem sich die Gerade g und der das Lot l schneiden. Im zweidimensionalen Raum musst du diesen Punkt gar nicht berechnen, sondern kannst ihn mit einem Geodreieck oder einem Zirkel und Lineal bestimmen. 

    Welche Eigenschaften hat ein Lot?

    Ein Lot hat die Eigenschaft, dass es senkrecht zu der Geraden g verläuft, dessen Lot es ist. 

    Deshalb liegt ein rechter Winkel zwischen der Geraden g und dem Lot l. 

    Jedes Lot hat außerdem einen Lotfußpunkt L. Hierbei handelt es sich um den Punkt, an dem sich das Lot und die dazugehörige Gerade schneiden. 

    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 8 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren