Mittelsenkrechte – Definition
Die Mittelsenkrechte m einer Strecke ist diejenige Gerade, die durch den Mittelpunkt M der Strecke geht und senkrecht auf ihr steht.
Also ist die Mittelsenkrechte nichts anderes als eine Gerade, die zur gegebenen Strecke senkrecht verläuft und diese auch somit schneidet. Der Schnittwinkel der Mittelsenkrechten zur Geraden ist ein rechter Winkel, also 90°. Die Besonderheit der Mittelsenkrechten ist, wie der Name schon sagt, dass diese die Gerade genau in der Mitte schneidet.
Abbildung 1: Mittelsenkrechte der Strecke
In der Mathematik findet die Mittelsenkrechte viel Anwendung, vor allem im Teilgebiet der Geometrie. Beispielsweise brauchst du die Mittelsenkrechte, wenn du den Umkreis eines Dreiecks konstruieren möchtest, da du mit Hilfe der Mittelsenkrechten den Mittelpunkt bestimmen kannst. Außerdem kannst du den Mittelpunkt einer Strecke bestimmen, um danach den Thaleskreis einzuzeichnen.
Falls du vom Thaleskreis noch nichts gehört hast, ist das nicht schlimm. Das Wissen brauchen wir zur Konstruktion einer Mittelsenkrechten nicht. Falls du dennoch mehr darüber lernen möchtest, empfehle ich dir den Artikel Satz des Thales durchzulesen!
Mittelsenkrechte konstruieren mit dem Geodreieck
Falls du zur Konstruktion einer Mittelsenkrechten ein Geodreieck verwenden darfst, dann wird dir die Konstruktion leicht fallen! Dies ist auch die effizienteste Methode die Mittelsenkrechte einzuzeichnen, wenn du also auf dein Geodreieck zur Hand hast und dies auch benutzen darfst, dann solltest du dies auch tun.
Konstruktionsschritte | Abbildungen 2-5: Konstruktionsschritte zur Mittelsenkrechten mit Geodreieck |
1. Schritt: Zunächst muss eine Strecke gegeben sein, über welche du die Mittelsenkrechte einzeichnen sollst. | |
2. Schritt:Um die Mittelsenkrechte einzuzeichnen misst du die Länge deiner Strecke . Danach halbierst du die Strecke und zeichnest dann in der Mitte einen kleinen Punkt ein. Dies ist der Mittelpunkt M der Strecke . | |
3. Schritt:Nun legst du die 90° Hilfslinie des Geodreiecks genau auf die Strecke , so dass die Grundlinie des Geodreiecks genau dort anfängt, wo du zuvor den kleinen Strich eingezeichnet hast. | |
4. Schritt: Jetzt ziehst du an der Grundlinie einfach nur eine Linie lang. Dies ist dann auch schon deine Mittelsenkrechte. Üblicherweise wird die Mittelsenkrechte mit einem kleinen m bezeichnet. Dann zeichnest du den rechten Winkel noch ein und bist dann auch schon fertig! | |
Im Mathematikunterricht ist es eher unüblich mit dem Geodreieck geometrische Objekte zu konstruieren. Eher würde man hier vom zeichnen sprechen. Daher stellen wir dir im Anschluss die wissenschaftlichere und saubere Variante dar – Die Konstruktion der Mittelsenkrechte mit einem Zirkel.
Mittelsenkrechten konstruieren mit dem Zirkel
Für den Fall, dass du dein Geodreieck nicht benutzen darfst oder du keines zur Verfügung hast, benötigst du einen Zirkel und ein Lineal.
Mittelsenkrechte konstruieren – Anleitung
Dein Vorgehen bei der Konstruktion der Mittelsenkrechten kannst du auch in einer formalen Anleitung festhalten. Hier siehst du, wie eine solche Anleitung aussehen kann:
k(A;r) bedeutet, dass du um den Punkt A einen Kreis mit Radius r zeichnen musst. Der 3. Schritt bedeutet, dass die Mittelsenkrechte die Gerade ist, die durch die Punkte T und U verläuft.
Mittelsenkrechte konstruieren – Das Wichtigste
- Die Mittelsenkrechte ist eine Gerade, die eine Strecke halbiert und auf dieser senkrecht steht.
- Anwendung findet diese Konstruktion bei anderen Konstruktionen wie die Konstruktion des Umkreises eines Dreiecks oder dem Thaleskreis.
- Die Mittelsenkrechte kann sehr effizient und schnell mit einem Geodreieck eingezeichnet werden.
- Die Mittelsenkrechte kann auch mit einem Zirkel konstruiert werden.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen