Punkt Geometrie

Punkte begegnen Dir überall im Alltag. Wenn Du Dich mit Deinen Freunden oder Bekannten in der Stadt verabreden möchtest, dann triffst Du Dich mit Ihnen an einem zuvor bestimmten Punkt. Dieser Punkt gibt eine bestimmte Lage innerhalb Deiner Stadt an.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Punkt Geometrie Lehrer

  • 7 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Auch in der Mathematik geht es oft um Punkte und darum, die Abstände zweier Punkte zu berechnen. In dieser Erklärung lernst Du alles über die Definition, Darstellung und die Berechnung des Abstandes von Punkten

    Punkt Mathematik Basiswissen

    Der Punkt ist einer der wichtigsten Grundbegriffe innerhalb der Geometrie.

    Er ist beispielsweise eine Grundlage für das kartesische Koordinatensystem.

    Ein markanter Punkt ist der Ursprung des Koordinatensystems, der sich am Schnittpunkt der y-Achse (Ordinatenachse) und x-Achse (Abszisse) befindet.

    Punkt Definition

    Im Folgenden erfährst Du, wie ein Punkt in der Mathematik definiert ist.

    In der Geometrie gibt ein Punkt eine genaue Position an. Ein Punkt hat keine Ausdehnung. Das heißt, er besitzt weder Länge, Breite noch Höhe.

    Ein Punkt entsteht auch, wenn zwei gerade Linien sich kreuzen.

    Ein Punkt kann im zwei- und dreidimensionalen Koordinatensystem beschrieben werden.

    Punkt Mathematik Schreibweise

    Im zweidimensionalen Koordinatensystem ist die allgemeine Schreibweise für Punkte \begin{align}P({\color{#1478C8}x}|{\color{#00dcb4}y})\end{align}

    Vor die Klammer wird üblicherweise ein Buchstabe geschrieben, mit dem der Punkt benannt wird (hier der Buchstabe \(P\)).

    Der Ausdruck \(({\color{#1478C8}x}|{\color{#00dcb4}y})\) wird auch als Zahlenpaar bezeichnet. Die beiden reelen Zahlen des Punktes \({\color{#1478C8}x}\) und \({\color{#00dcb4}y}\) werden auch Koordinaten des Punktes genannt. Die Koordinaten geben die Lage bezüglich der Achsen an.

    Die linke Zahl des Punktes wird deshalb auch als \({\color{#1478C8}\text{x-Wert}}\) oder \({\color{#1478C8}\text{x-Koordinate}}\) und die rechte Zahl als \({\color{#00dcb4}\text{y-Wert}}\) oder \({\color{#00dcb4}\text{y-Koordinate}}\) bezeichnet.

    \begin{align}P({\color{#1478C8}2}|{\color{#00dcb4}3})\end{align}Der Punkt \(P\) hat den x-Wert \({\color{#1478c8}{2}}\) und den y-Wert \({\color{#00dcb4}{3}}\).

    Im dreidimensionalen Koordinatensystem gibt es anstelle von zwei Achsen \({\color{#1478C8}x},\,{\color{#00dcb4}y}\) logischerweise drei Koordinatenachsen \({\color{#1478C8}x},\,{\color{#00dcb4}y},\,{\color{#fa3273}z}\). Dementsprechend sieht der Punkt P dann so aus: \(P({\color{#1478C8}x}|{\color{#00dcb4}y}|{\color{#fa3273}z})\).

    \begin{align} P{\color{#1478c8}1} | {\color{#00dcb4}7} | {\color{#fa3273}4} \end{align}

    Der Punkt \(P\) liegt im dreidimensionalen Koordinatensystem und besitzt den x-Wert \(\color{#1478c8}1\), y-Wert \(\color{#00dcb4}7\) und den z-Wert \(\color{#fa3273}4\).

    Punkt darstellen

    Die Position eines Punktes im Koordinatensystem wird durch seine Koordinaten festgelegt. Er kann dementsprechend auch in das Koordinatensystem eingetragen werden.

    Punkt darstellen in der Ebene

    Um einen Punkt in ein zweidimensionales Koordinatensystem zu zeichnen, startest Du beim Ursprung (Nullpunkt) des Koordinatensystems.

    Von dort liest Du zuerst die x-Einheiten auf der x-Achse nach rechts/links und dann die y-Einheiten auf der y-Achse nach oben/unten ab. Dort kannst Du dann den Punkt mit einem Kreuz einzeichnen.

    Merkspruch: Erst laufen, dann springen.

    Laufe zuerst entlang der x-Achse (erste Zahl) und springe anschließend nach oben/unten in Richtung des y-Werts (zweite Zahl).

    Ein Beispiel zeigt Dir, wie das Ganze funktioniert.

    Aufgabe 1

    Zeichne den Punkt \(P({\color{#1478C8}2}|{\color{#00dcb4}3})\) in das zweidimensionale Koordinatensystem ein.

    Lösung

    Du startest also beim Ursprung.

    Von dort "läufst" Du zuerst \({\color{#1478C8}2}\) Einheiten nach rechts, also in Richtung der positiven x-Achse. Nun bist Du bei \({\color{#1478C8}x=2}\) angekommen. Anschließend "springst" Du jetzt von \({\color{#1478C8}x=2}\) um \({\color{#00dcb4}3}\) Einheiten nach oben, in Richtung positiver y-Achse.

    Die Abbildung unten verdeutlicht Dir das Vorgehen.

    Punkt Punkt P(2|3) StudySmarterAbb. 1 - Punkt P(2|3)

    Punkt darstellen im Raum

    Auch Punkte im dreidimensionalen Raum der Form \(P({\color{#1478C8}x}|{\color{#00dcb4}y}|{\color{#fa3273}z})\) können innerhalb des Koordinatensystems dargestellt werden.

    Hier musst Du Dich zusätzlich zu x-Wert und y-Wert noch ein weiteres Mal Richtung z-Wert bewegen.

    Das bedeutet, dass man zuerst entlang der x-Achse "läuft" (erste Zahl), anschließend in Richtung des y-Werts (zweite Zahl) und dann weiter in Richtung des z-Werts "springt".

    Nun direkt ein Beispiel dazu.

    Aufgabe 2

    Zeichne den Punkt \(P({\color{#1478C8}2}|{\color{#00dcb4}3}|{\color{#fa3273}4})\) in das dreidimensionale Koordinatensystem ein.

    Lösung

    Du beginnst beim Ursprung und läufst \({\color{#1478C8}2}\) Einheiten in Richtung der positiven x-Achse. Nun bist Du bei \({\color{#1478C8}x=2}\) angekommen. Von diesem Punkt springst Du \({\color{#00dcb4}3}\) Einheiten nach rechts, also in Richtung der positiven y-Achse. Von da aus springst Du ein zweites Mal \({\color{#fa3273}4}\) Einheiten nach oben in Richtung der positiven z-Achse. Somit landest Du bei Punkt P.

    Punkt Punkt P im Raum StudySmarterAbb. 2 - Punkt P im Raum.

    Analytische Geometrie Abstand zweier Punkte

    Gibt es mehr als einen Punkt, so wird der Abstand zwischen verschiedenen Punkten wichtig. Dabei kannst Du den Abstand entweder in der Ebene oder im Raum berechnen.

    Abstand in der Ebene

    Angenommen, der Abstand zwischen Punkt \(A\) und Punkt \(B\) soll in der Ebene berechnet werden. Ganz allgemein gilt: \(A=(x_1|y_1)\) und \(B=(x_2|y_2)\).

    Dann kannst Du den Abstand \(d\) nach folgender Formel berechnen:\[d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\]

    Punkt Abstand zweier Punkte in der Ebene StudySmarterAbb. 3 - Abstand zweier Punkte in der Ebene.

    In der oberen Abbildung ist der Abstand \(d\) auch ablesbar, wenn Du die Linie mit der x-Achse vergleichst. Dann siehst Du, dass der Abstand \(d=2\) beträgt.

    Nachfolgend findest Du ein Beispiel für Dich, damit Du den Abstand zweier Punkte in der Ebene berechnen kannst.

    Aufgabe 3

    Berechne den Abstand \(d\) zwischen den Punkten \(A(2|3)\) und \(B(4|4)\).

    Punkt Abstand zwischen den Punkten A und B in der Ebene StudySmarterAbb. 4 - Abstand zwischen den Punkten A und B in der Ebene.

    Lösung

    Die allgemeine Formel für den Abstand \(d\) zwischen zwei Punkten \(A\) und \(B\) lautet: \[d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\] Um den Abstand \(d\) zu berechnen, setzt Du also die Punkte aus der Abbildung 4 in die Formel ein. Dann sieht das so aus:\[d=\sqrt{(4-2)^2+(4-3)^2}=\sqrt{2^2+1^2}\\=\sqrt{5}\]Der Abstand \(d\) zwischen Punkt \(A(2|3)\) und Punkt \(B(4|4)\) beträgt also \(\sqrt{5} \approx 2,24\).

    Abstand im Raum

    Im Raum sieht die Abstandsberechnung zwischen zwei Punkten ähnlich wie in der Ebene aus.

    Angenommen, der Abstand zwischen Punkt \(A\) und Punkt \(B\) soll im Raum nach der Abbildung 5 berechnet werden. Ganz allgemein ist \(A=(x_1|y_1|z_1)\) und \(B=(x_2|y_2|z_2)\). Dann kannst Du den Abstand \(d\) nach folgender Formel berechnen:\[d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}\]

    Punkt Abstand zweier Punkte im Raum StudySmarterAbb. 5 - Abstand zweier Punkte im Raum.

    Als Nächstes findest Du unten ein Beispiel für die Berechnung des Abstands \(d\) zwischen zwei Punkten im dreidimensionalen Raum.

    Aufgabe 4

    Berechne den Abstand \(d\) zwischen den Punkten \(A(2|2|4)\) und \(B(3|2|5)\).

    Lösung

    Die allgemeine Formel für den Abstand \(d\) zwischen zwei Punkten \(A(x_1|y_1|z_1)\) und \(B(x_2|y_2|z_2)\) lautet: \begin{align}d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}&=\sqrt{(3-2)^2+(2-2)^2+(5-4)^2}\\&=\sqrt{1^2+0^2+1^2}\\&=\sqrt{2}\end{align}Der Abstand \(d\) zwischen Punkt \(A(2|2|4)\) und Punkt \(B(3|2|5)\) ist also \(\sqrt{2}\).

    Du möchtest Dein Wissen über die Berechnung des Abstandes zweier Punkte auffrischen? Dann schau doch gerne in dem Artikel Abstand zweier Punkte vorbei!

    Punkt – Das Wichtigste

    • In der Geometrie gibt ein Punkt eine genaue Position an. Ein Punkt hat keine Ausdehnung. Das heißt, er besitzt weder Länge, Breite noch Höhe.
    • Ein Punkt in der Ebene wird durch ein Zahlenpaar dargestellt. Die Form sieht so aus: \(P(x|y)\).
    • Die allgemeine Form eines Punktes im Raum sieht so aus:\[P(x|y|z)\]
    • Den Abstand zwischen den Punkten \(A(x_1|y_1)\) und \(B(x_2|y_2)\) in der Ebene kannst Du mit der Formel \[d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\]ausrechnen.
    • Den Abstand zwischen den Punkten \(A(x_1|y_1|z_1)\) und \(B(x_2|y_2|z_2)\) im dreidimensionalen Raum kannst Du mit der Formel \[d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}\]ausrechnen.
    Lerne schneller mit den 0 Karteikarten zu Punkt Geometrie

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Punkt Geometrie
    Häufig gestellte Fragen zum Thema Punkt Geometrie

    Was ist die Schreibweise eines Punkts in der Geometrie? 

    Die allgemeine Form eines Punkts im zweidimensionalen Koordinatensystem, also in der Ebene, lautet folgendermaßen: P(x|y)


    Die allgemeine Form eines Punkts im Raum lautet: P(x|y|z)

    Was ist ein Punkt in der Geometrie? 

    In der Geometrie gibt ein Punkt eine genaue Position an. Ein Punkt hat keine Ausdehnung. Das heißt, er besitzt weder Länge, Breite noch Höhe. Ein Punkt entsteht auch, wenn zwei gerade Linien sich kreuzen.

    Wie berechnet man den Abstand zweier Punkte in der Ebene? 

    In der Ebene lautet die allgemeine Formel für den Abstand d zwischen zwei Punkten A und B: d=✓(x2-x1)2+(y2-y1)2

    Um den Abstand d zu berechnen, setzt Du die gegebenen Punkte A und B in die Formel mit der Wurzel ein.

    Wie berechnet man den Abstand zwischen zwei Punkten im Raum?

    Im Raum lautet die allgemeine Formel für den Abstand d zwischen zwei Punkten A und B: d=✓(x2-x1)2+(y2-y1)2+(z2-z1)2

    Um den Abstand d zu berechnen, setzt Du die gegebenen Punkte A und B in die Formel mit der Wurzel ein.

    Erklärung speichern

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 7 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren