Raute

Im Alltag begegnen Dir immer mal wieder Gegenstände, welche die Form einer Raute haben. Darunter fallen zum Beispiel Vereinslogos, einige Straßenschilder, oder das Karozeichen bei Spielkarten. Bei der berühmten Handhaltung von Angela Merkel, der "Merkel-Raute", handelt es sich, wie der Name schon vermuten lässt, tatsächlich auch um eine Raute. Was genau eine Raute ist und wie Du bestimmte Größen einer Raute berechnen kannst, erfährst Du hier!

Los geht’s

Scanne und löse jedes Fach mit AI

Teste unseren Hausaufgabenhelfer gratis Homework Helper
Avatar

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Raute Lehrer

  • 12 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 27.04.2023
  • 12 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 27.04.2023
  • 12 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Danke für dein Interesse an Audio-Lernen!

Die Funktion ist noch nicht ganz fertig, aber wir würden gerne wissen, warum du Audio-Lernen bevorzugst.

Warum bevorzugst du Audio-Lernen? (optional)

Feedback senden
Als Podcast abspielen 12 Minuten

Raute Merkel-Raute StudySmarterAbb. 1 - Merkel-Raute.

Teste dein Wissen mit Multiple-Choice-Karteikarten

1/3

Wie berechnet man die Diagonale f, wenn die Diagonale e bekannt ist?

1/3

Welche geometrische Figur ist die Raute?

1/3

Welche Eigenschaften hat eine Raute bezüglich ihrer Seiten?

Weiter

Raute – Definition & Eigenschaften

Eine Raute ist eine spannende geometrische Figur aus der Familie der Vierecke. Damit Du eine Raute richtig verstehst, sind hier ihre wichtigsten Eigenschaften:

  • Alle 4 Seiten sind gleich lang, also a=b=c=d. Die gegenüberliegenden Seiten sind dabei jeweils parallel zueinander, also ABCD und BCDA.

  • Die jeweils gegenüberliegenden Innenwinkel sind gleich groß. Das bedeutet α=γ und β=δ.

  • Die Raute hat zwei Diagonalen, e und f, welche einander im Mittelpunkt M der Figur senkrecht halbieren. Somit gilt: ef.

Um eine Raute geometrisch korrekt darzustellen, solltest Du Dich an ein bestimmtes Grundprinzip bei der Beschriftung halten. Denk daran, dass die Seiten mit gleichen Buchstaben und die Winkel mit gleichen griechischen Buchstaben beschriftet werden.

Raute – Beschriftung

Um die Raute richtig zu beschriften, solltest Du folgendes Schema beachten:

  • Seitenbeschriftung: Verwende Kleinbuchstaben, und da alle vier Seiten gleich lang sind, beschrifte jede Seite mit "a".
  • Eckpunkte: Beschrifte die Eckpunkte im Gegenuhrzeigersinn mit Großbuchstaben – A, B, C, D.
  • Diagonalen: Zeichne gestrichelte Linien für die Diagonalen und beschrifte sie mit "e" und "f".
  • Winkel: Verwende griechische Buchstaben zur Beschriftung der Winkel. Die gegenüberliegenden Winkel sind jeweils gleich groß, daher beschrifte die Winkel mit α und β.

Raute Beschriftung StudySmraterAbb. 2 - Beschriftung einer Raute.

Raute – Seitenlängen, Winkel, Symmetrie

Im Folgenden werden einige Eigenschaften der Raute noch etwas genauer beleuchtet.

Alle Seiten der Raute sind gleich lang. Zudem sind die gegenüberliegenden Seiten parallel zueinander.

Raute Seitenlängen StudySmarter

Die Winkelinnensumme der Raute beträgt 360. Die gegenüberliegenden Winkel sind jeweils gleich groß, benachbarte Winkel ergeben zusammen 180. α+β=180

Raute Winkel StudySmarter

Die Raute als geometrische Figur ist sowohl punktsymmetrisch als auch achsensymmetrisch.

Jede Raute hat zwei Symmetrieachsen, welche hier in türkis dargestellt werden. Dabei handelt es sich um die Diagonalen e und f, die sich im Mittelpunkt M der Figur schneiden.

Neben der Achsensymmetrie ist jedes Quadrat auch punktsymmetrisch zum Mittelpunkt M.

Raute Symmetrieachsen StudySmarter

Raute zeichnen

Du kannst eine Raute auf verschiedene Weisen zeichnen. Die Art und Weise des Zeichnens sind immer davon abhängig, welche Längen Du von der zu zeichnenden Raute kennst. Im nachfolgenden Beispiel findest Du eine Schritt-für-Schritt-Anleitung für das Zeichnen einer Raute, wenn Du nur die Seitenlängen a vorgegeben hast.

Zeichne eine Raute mit den Seitenlängen von a=5cm.

SchritteVisualisierung
Schritt 1: Zeichne eine waagrechte Hilfslinie und markiere Punkt A irgendwo auf dieser Linie.

Raute zeichnen Hilfslinie StudySmarter

Schritt 2: Miss mit Deinem Geodreieck von Punkt A aus einen Abstand mit der Seitenlänge von a=5cm und markiere dort Punkt B. Verbinde diese Punkte miteinander.

Raute zeichnen erste Seite StudySmarter

Schritt 3: Leg jetzt das Geodreieck an Punkt B an und markiere den Punkt auf der Hilfslinie, der wiederum 5cm von Punkt B entfernt ist, als Punkt C. Verbinde diese Punkte auch miteinander.

Raute zeichnen zweite Seite StudySmarter

Schritt 4: Zeichne eine weitere Hilfslinie, die durch Punkt B geht und senkrecht zur ersten Hilfslinie steht.

Raute zeichnen zweite Hilfslinie StudySmarter

Schritt 5: Leg das Geodreieck an Punkt C an und markiere den Punkt auf der neuen Hilfslinie, der wiederum 5cm von Punkt C entfernt ist, als Punkt D. Verbinde diese Punkte miteinander.

Raute zeichnen dritte Seite StudySmarter

Schritt 6: Zuletzt musst Du nur noch die Punkte D und A miteinander verbinden. Wenn Du korrekt gezeichnet hast, ist diese Strecke erneut 5cm lang.

Raute zeichnen vierte Seite StudySmarter

Damit hast Du nun erfolgreich eine Raute mit a=5cm konstruiert. Die Hilfslinien stellen in gekürzter Form die Diagonalen dar.

Raute zeichnen StudySmarterAbb. 3 - gezeichnete Raute.

Wenn, wie bei dieser Aufgabe, keine zusätzlichen Angaben zu den Winkeln gemacht werden, kann die Form der Raute bei gleicher Seitenlänge variieren.

Raute – Berechnungen und Formeln

Schließe dich mit deinen Freunden zusammen, und habt Spaß beim Lernen

Kostenlos registrieren
Raute

Umfang berechnen

Bei einer Raute haben alle vier Seiten die gleiche Länge, sodass Du nur eine Seitenlänge benötigst, um den gesamten Umfang zu berechnen.

Die Formel für den Umfang U einer Raute mit Seitenlänge a lautet:

U=4a

Möchtest Du nun den Umfang einer Raute berechnen, benötigst Du also nur die Länge einer einzigen Seite.

Stell Dir vor, Dein Garten hat die Form einer Raute und Du möchtest ihn umzäunen. Die Seitenlänge von Deinem Garten beträgt jeweils 6m. Wie viel Meter Zaun benötigst Du, um den Garten komplett einzuzäunen?

Gesucht ist der Umfang des Gartens – also der Umfang einer Raute.

Zur Berechnung setzt Du jetzt für a in die Formel die Länge der Seite ein, also a=6m.

U=4aU=46mU=24m

Die Raute hat damit einen Umfang von 24m. Genauso lang muss somit der Zaun sein, damit dieser den Garten voll umschließt.

Wenn Du mehr über das Thema lernen möchtest, schau in der Erklärung "Umfang Raute" vorbei!

Flächeninhalt berechnen

Formel mit Diagonalen

Anders als beim Umfang benötigst Du für die Berechnung des Flächeninhaltes nicht unbedingt eine Seitenlänge.

Der Flächeninhalt A einer Raute mit den Längen der Diagonalen e und f kann mit folgender Formel berechnet werden:

A=12ef

Den Umfang Deines Gartens kennst Du nun bereits, wie sieht es mit der Fläche aus?

Flächeninhalt mit Diagonalen berechnen:

Du möchtest Deinen Garten, der die Form einer Raute hat, mit Rollrasen auslegen. Die Länge der Diagonalen beträgt: e=9,75mf=7m.Wie viel Quadratmeter Rollrasen benötigst Du, um den Garten komplett auszulegen?

Gesucht ist also die Fläche des Gartens – hier hat der Garten die Fläche einer Raute. Zur Berechnung setzt Du jetzt für die Diagonalen e und f die jeweiligen Längen in die Formel für den Flächeninhalt A ein.

A=12efA=129,75m7mA=34,125m2

Damit benötigst Du 34,125m2 Rasen, um Deinen Garten komplett zu bedecken.

Formel mit Grundseite und Höhe

Da die gegenüberliegenden Seiten bei jeder Raute jeweils parallel zueinander sind, ist jede Raute auch immer gleichzeitig ein Parallelogramm.

Dies bedeutet folglich, dass die Formel für den Flächeninhalt eines Parallelogramms ebenso für den Flächeninhalt einer Raute gilt.

Der Flächeninhalt einer Raute mit der Seitenlänge a und Höhe ha kann mit folgender Formel berechnet werden:

A=aha

Die Höhe ha steht dabei immer senkrecht zu den Seitenlängen a.

Raute Flächeninhalt bestimmen mit Höhe StudySmarterAbb. 4 - Raute mit eingezeichneter Höhe.

Wie ändert sich Deine vorige Rechnung für den Flächeninhalt des Gartens also, wenn Du anstatt der Diagonalen die Höhe und Seitenlänge der Raute kennst?

Die Seitenlänge Deines Gartens mit a=6m kennst Du bereits. Da die Höhe ha einer Raute senkrecht zu den jeweiligen Seiten der Raute stehen muss, nutzt Du für eine möglichst genaue Messung einen Laser. Du misst 5,6875 m.

Gesucht wird also der Flächeninhalt einer Raute mit den Seitenlängen von jeweils a=6m und einer Höhe von ha=5,6875m.

Zur Berechnung setzt Du also für die Seitenlänge a und die Höhe ha die jeweiligen Längen in die Formel für den Flächeninhalt ein.

A=ahaA=6m5,6875 mA=34,125cm2

Der Flächeninhalt des Gartens beträgt 34,125m2. Du kommst also mit beiden Formeln zum selben Ergebnis.

Mehr zu dem Thema findest Du in der Erklärung "Flächeninhalt Raute".

Lerne mit Millionen geteilten Karteikarten

Kostenlos registrieren
Raute

Diagonalen berechnen

Die beiden Diagonalen e und f stehen senkrecht aufeinander und teilen die Raute in vier gleich große, rechtwinklige Teildreiecke.

Raute Diagonale berechnen Herleitung StudySmarterAbb. 5 - Aufteilung der Raute in vier gleiche, rechtwinklige Dreiecke durch die Diagonalen.

Daraus lassen nun verschiedene Formeln zur Berechnung der einzelnen Längen der Diagonalen ableiten.

Formel mit Winkel

Wenn Dir die Winkel α und β sowie die Seitenlängen a von einer Raute bekannt sind, kannst Du damit die Länge der Diagonalen e und f berechnen.

Die Länge der Diagonalen e und f einer Raute mit Seitenlänge a und Winkel α lässt sich mit folgenden Formeln berechnen:

e=2acos(α2)f=2asin(α2),

wobei für den Winkel α Folgendes gilt: α=180β

Achte bei den Formeln genau darauf, wo die einzelnen Diagonalen und Winkel in der Raute liegen. Die Diagonale e muss hier den Winkel α schneiden, damit die oben genannten Formeln in der Form gelten.

Raute Diagonale berechnen Herleitung StudySmarterAbb. 6 - Lage der Diagonalen in Bezug zu den Winkeln.

Gegeben ist eine Raute mit Seitenlängen a=5cm und dem Winkel α=60. Berechne die Länge der Diagonalen f der Raute.

Raute Diagonale berechnen Aufgabe StudySmarterAbb. 7 - Raute Aufgabe 2.

Setze zur Berechnung die Seitenlänge a=5cm und den Winkel α=60 in die Formel ein.

f=2asin(α2)f=25cmsin(602)f=5cm

Damit hat die Diagonale die gleiche Länge wie die Seiten.

Formel mit der anderen Diagonalen

Wenn Du schon die Länge einer Diagonalen kennst, kannst Du damit auch die Länge der anderen Diagonalen berechnen.

Die Länge der Diagoanlen e und f einer Raute mit Seitenlänge a und der jeweils anderen Diagoanlen lässt sich mit folgenden beiden Formeln berechnen:

e=2af2f=2ae2

Versuche nun die Länge der anderen Diagonalen aus Aufgabe 2 zu berechnen.

Gesucht ist die Länge der Diagonalen e einer Raute mit den Seitenlängen von jeweils a=5cm. Du kennst bereits die Länge der anderen Diagonalen f=5cm.

Zur Berechnung setzt Du nun die Länge der Seiten a und der Diagonalen f in die Formel ein.

e=2af2e=25cm5cm2e7,07 cm

Die Diagonale e ist also in etwa 7cm lang.

Raute - Das Wichtigste

  • Die Raute ist eine geometrische Figur aus der Familie der Vierecke und ist durch folgende Eigenschaften definiert:
    • Alle 4 Seiten sind gleich lang, wobei die gegenüberliegenden Seiten jeweils parallel zueinander sind.
    • Die jeweils gegenüberliegenden Innenwinkel sind gleich groß.
    • Die Raute hat zwei Diagonalen e und f, welche einander im Mittelpunkt M der Figur senkrecht halbieren.
  • Die Raute ist achsensymmetrisch zu den Diagonalen und punktsymmetrisch zum Mittelpunkt M.
  • Der Umfang U einer Raute mit Seitenlänge a kann mit folgender Formel berechnet werden:

    U=4a

  • Den Flächeninhalt A kannst Du ebenfalls auf zwei Arten berechnen:

    • Der Flächeninhalt A einer Raute mit den Längen der Diagonalen e und f kann mit folgender Formel berechnet werden:

      A=12ef

    • Der Flächeninhalt einer Raute mit der Seitenlänge a und Höhe ha kann mit folgender Formel berechnet werden:

      A=aha

  • Die Länge der Diagonalen e und f kannst Du auf zwei unterschiedliche Arten berechnen:

    • Die Länge der Diagonalen e und f einer Raute mit Seitenlänge a und Winkel α lässt sich mit folgenden Formeln berechnen: e=2acos(α2)f=2asin(α2),

    • Ist schon die Länge einer Diagonalen bekannt, kannst Du zusammen mit der Seitenlänge a die jeweils andere Diagonale berechnen:

      e=2af2f=2ae2


Nachweise

  1. Erbrecht et al. (2012). Das große Tafelwerk interaktiv Formelsammlung für die Sekundarstufen I und II. Cornelsen Verlag, Berlin
  2. Ernst (1977). Geometrie 1. Ehrenwirth Verlag, München
  3. Abbildung 1: Merkel-Raute (https://upload.wikimedia.org/wikipedia/commons/8/85/Angela_Merkel_hands.jpg) von Armin Linnartz unter der Lizenz CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0).
Häufig gestellte Fragen zum Thema Raute

Was ist eine Raute?

Eine Raute ist eine geometrische Figur aus der Familie der Vierecke. Sie ist durch folgende Eigenschaften definiert:


  • Alle 4 Seiten sind gleich lang, wobei die gegenüberliegenden Seiten jeweils parallel zueinander sind.
  • Die jeweils gegenüberliegenden Innenwinkel sind gleich groß.
  • Die Raute hat zwei Diagonalen, welche einander im Mittelpunkt der Figur senkrecht halbieren.

Ist ein Quadrat auch eine Raute?

Bei einem Quadrat sind alle Seiten gleich lang. Dies ist bei der Raute auch der Fall. Da nicht jede Raute ausschließlich rechte Winkel hat, ist j Damit ist die Raute ein Spezialfall eines Quadrats. Da

Was ist die Flächenformel von einer Raute?

Die Fläche A einer Raute kann mit zwei verschiedenen Formeln berechnet werden. 


  • Der Flächeninhalt A einer Raute mit den Längen der Diagonalen e und f kann mit folgender Formel berechnet werden: A = 0,5 · e · f

  • Der Flächeninhalt einer Raute mit der Seitenlänge a und Höhe h kann mit folgender Formel berechnet werden: A = a · h

Was ist der Unterschied zwischen einem Parallelogramm und einer Raute?

Bei einem Parallelogramm sind die gegenüberliegenden Seiten parallel. Dies ist auch bei einer Raute der Fall. Allerdings sind bei einer Raute alle Seitenlängen immer gleich, während bei einem Parallelogramm nur die jeweils gegenüberliegenden Seiten gleich lang sind. Eine Raute ist damit ein Sonderfall des Parallelogramms.

Erklärung speichern
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

Content-Erstellungsprozess:
Lily Hulatt Avatar

Lily Hulatt

Digital Content Specialist

Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

Lerne Lily kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas Avatar

Gabriel Freitas

AI Engineer

Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

Lerne Gabriel kennen

Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

Kostenlos anmelden
1
Über StudySmarter

StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

Erfahre mehr
StudySmarter Redaktionsteam

Team Mathe Lehrer

  • 12 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern

Lerne jederzeit. Lerne überall. Auf allen Geräten.

Kostenfrei loslegen

Melde dich an für Notizen & Bearbeitung. 100% for free.

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
Sign up with GoogleSign up with Google
Mit E-Mail registrieren

Schließ dich über 30 Millionen Studenten an, die mit unserer kostenlosen StudySmarter App lernen

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

Intent Image
  • Intelligente Notizen
  • Karteikarten
  • AI-Assistent
  • Lerninhalte
  • Probleklausuren