Umfang Quadrat

Heute lernst du, wie du den Umfang von einem Quadrat berechnen kannst und wie sich Fläche und Umfang zueinander verhalten. Außerdem werden wir nochmal die Eigenschaften des Quadrates wiederholen und am Ende kannst du dein erlangtes Wissen direkt bei einer Aufgabe testen.

Los geht’s

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Umfang Quadrat Lehrer

  • 9 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Quadrat Grundlagenwissen

    Du kennst bestimmt schon das Quadrat und dessen Eigenschaften. Falls du dir nicht mehr sicher bist und du gleich starten kannst den Umfang zu berechnen, gehen wir das wichtigste noch einmal zusammen durch.

    Ein Quadrat ist ein Rechteck, dessen vier Seiten gleich lang sind.

    Ein Quadrat weist demnach folgende Eigenschaften auf:

    • Es zählt zur Kategorie der Vierecke
    • Es hat immer 4 gleich lange Seiten
    • Alle Innenwinkel sind 90° groß
    • Auch die Diagonalen sind gleich lang

    Schau dir mal diese Abbildung 1 zum Quadrat an. Erinnerst du dich? Hier kannst du alle Eigenschaften, die wir gerade wiederholt haben nochmal feststellen.

    Die Punkte A, B, C und D sind die Eckpunkte des Quadrats. Die Seiten werden mit dem Buchstaben a beschrieben. Da alle Seiten die gleiche Länge haben, gibt es nämlich keine verschiedenen Bezeichnungen für die Seiten. Das macht das ganze doch noch einfacher, oder?

    Umfang Quadrat, Quadrat, StudySmarter

    Abbildung 1: Das Quadrat

    Wusstest du, dass das Quadrat nicht nur ein Viereck ist sondern auch ein Sonderfall des Rechtecks, der Raute, des Parallelogramms, des Trapezes und des Drachenvierecks?

    Falls du noch mehr zum Quadrat wissen möchtest, dann schau dir doch nochmal unseren Artikel dazu durch!

    Umfang Quadrat berechnen

    Nun schauen wir uns aber mal an, wie man den Umfang eines Quadrats bestimmen kann. Dafür kannst du am Anfang zur Veranschaulichung ein kariertes Heft zur Hand nehmen und dir mal ein Quadrat mit einem Lineal aufmalen. Das sollte dann ungefähr so aussehen:

    Umfang Quadratm, Der Umfang vom Quadrat ABCD, StudySmarterAbbildung 2: Der Umfang vom Quadrat

    Du kannst es dir so vorstellen als würde das Quadrat von den Kästchen eingeschlossen sein. Wir wollen herausfinden, wie viele Kästchen nun tatsächlich das Quadrat umschließen.

    Zähl doch einmal alle Kästchen durch, die das Quadrat einschließen. Die Anzahl der Kästchen ist dann der Umfang des Quadrates.

    Bei dem Quadrat aus Abbildung 2 ist der Umfang 24 Kästchen lang. Ich bin einmal an meinem Quadrat entlang gegangen und habe dort alle Kästchen gezählt die das Quadrat umschließen.

    Wie sieht es bei dir aus?

    Da du alle Kästchen an der jeweiligen Seitelänge a mit den der anderen zusammen addiert hast, erhältst du damit die folgende Formel zur Berechnung des Umfangs eines Quadrates:

    Umfang Quadrat Umfang Quadrat Formel StudySmarter

    Was der Umfang ist kannst du dir so merken, indem du dir vorstellst das der Umfang das Quadrat umfängt.

    Umfang Quadrat Formel

    Für den Anfang ist es leichter die Kästchen im Heft zu zählen, jedoch ist das natürlich nicht immer möglich denn manche Quadrate sind viel zu groß um sie in dein Heft zu malen. Und natürlich kostet dich das viel Zeit, wenn du alle Kästchen immer zählen musst.

    Da wir ja schon wissen, dass ein Quadrat immer 4 gleich lange Seiten hat, kommt dir die Formel für die Berechnung des Quadrats vielleicht relativ logisch vor.

    Wenn du vorhin beim Kästchen zählen genau aufgepasst hast dann hast du bestimmt gemerkt das die Kästchen für eine Seite des Quadrats immer gleich sind zu den der anderen Seiten.

    Den Umfang gibst du immer in einer Längeneinheit an: z. B. in Zentimetern oder Metern.

    Schau dir mal die Formel an mit der du den Umfang des Quadrates berechnen kannst. Statt alle Seiten miteinander zu addieren, multiplizieren wir eine Seite mal 4. Denn das geht viel schneller und ist auch deutlich einfacher. Das Ergebnis bleibt natürlich gleich.

    Die Formel für die Berechnung des Umfangs U für ein Quadrat mit der Seitenlänge a lautet also:

    Wenn die Seitenlänge zum Beispiel 2cm beträgt, dann ersetzt du das a durch die 2.

    Hier ist eine kleine Aufgabe für dich. damit du gleich mal testen kannst, wie gut du schon den Umfang von einem Quadrat berechnen kannst.

    Aufgabe:

    Bauer Willi hat sich 50 neue Hühner gekauft und will seinem Garten in einen Hühnerstall umbauen. Dafür möchte er einen Zaun bauen, der seinen ganzen Garten umschließt.

    Er möchte das ganze in einer quadratischen Fläche bauen. Dabei hat er pro Seite 6 Meter Platz.

    Er ist sich nicht ganz sicher wie viel Zaun er braucht um den ganzen Garten einzuschließen. Dafür braucht er deine Hilfe, denn du bist ja jetzt schon erfahren darin.

    Umfang Quadra Aufgab StudySmarterAbbildung 3: Der Garten von Bauer Willi

    Kannst du ihm helfen zu berechnen, wie viele Meter Zaun er kaufen muss?

    Lösung:

    Hier hast du den korrekten Lösungsweg, vergleiche ihn mal mit deiner Rechnung! Die Seitenlänge einer Zaunseite beträgt

    Du setzt die 6 Meter in die Formel für den Umfang ein und erhältst

    Das Ergebnis beträgt 24 Meter. Er muss also im Baumarkt 24 Meter Zaun kaufen.

    Wusstest du das man mit dem Umfang eines Quadrates auch die Länge der Diagonalen feststellen kannst? Lies dir gerne mal unseren Artikel dazu durch!

    Verhältnis Umfang und Fläche Quadrat

    Da du nun ein Profi im Berechnen des Umfangs bist, schauen wir uns noch an, wie das Verhältnis von Fläche und Umfang in einem Quadrat ist. Dafür musst du zuerst wissen was überhaupt der Unterschied zwischen der Fläche und einem Umfang ist.

    Unterschied Fläche und Umfang

    Du hast bestimmt auch schon die Fläche kennengelernt. Falls du dich nicht mehr erinnerst, schau dir mal diese Definition an:

    Eine Fläche ist ein Bereich, der sich über Länge und Breite erstreckt.

    Um dir den Unterschied zwischen den Umfang und Fläche zu merken, empfehle ich dir dass du dir immer ein Quadrat vorstellst oder eine andere Fläche die du schon kennst, zum Beispiel einen Parkplatz oder ein Haus.

    Fläche eines QuadratesUmfang eines Quadrates
    Die Fläche eines Quadrates ist der Bereich, der von den Seiten des Quadrates eingeschlossen wird. In deinem Matheheft sind also alle Kästchen die du innerhalb von deinem Quadrat zählen kannst die Fläche.Der Umfang hingegen, entspricht der Länge, die dein Quadrat umschließt. Das sind also alle Kästchen in deinem Matheheft, die an du an den Außenseiten des Quadrates zählen kannst.

    Schau dir doch nochmal unseren Artikel zum Thema Flächeninhalt vom Quadrat an, wenn du noch mehr dazu wissen willst!

    Wenn du dir nochmal den Garten von Bauer Willi vorstellst, dann weißt du das der Zaun den Garten umschließt. Das ist dann also der Umfang des Gartens.

    Aufgabe:

    Kannst du dir eine Situation vorstellen, weswegen Bauer Willi die Fläche seines Gartens brauchen könnte?

    Lösung:

    Er könnte den Flächeninhalt seines Gartens zum Beispiel dafür brauchen, wenn er seinen Garten mit Rasen oder Stroh füllen würde. Wenn du etwas anderes aufgeschrieben hast, kann das trotzdem richtig sein. Die Lösung gilt nur als Inspiration für dich.

    Verhältnis Fläche und Umfang

    Wenn wir das Verhältnis von Fläche und Umfang erfahren, dann können wir uns das Quadrat meist besser vorstellen. Es ist wichtig, dass wir uns damit beschäftigen um uns Größen besser im Verhältnis zu visualisieren. Um das Verhältnis von Fläche und Umfang zu berechnen brauchst du zum einen der Flächeninhalt A und den Umfang U.

    Im Folgenden musst du dann den Flächeninhalt durch den Umfang dividieren.

    Die Fläche eines Quadrates mit den Seitenlängen a ergibt sich durch

    Die Formel um das Verhältnis zwischen der Fläche A und dem Umfang U zu berechnen lautet:

    Damit ist das Verhältnis zwischen der Fläche A und dem Umfang U eines Quadrates immer ein Viertel der Seitenlänge a.

    Nun schauen wir uns nochmal das Beispiel an, dass wir schon kennen.

    Aufgabe

    Bauer Willi muss für den Zaun 24 Metern Material kaufen um den Hühnerstall zu bauen. Das heißt der Umfang ist also 24 m.

    Nun möchte er auch noch Rasen kaufen. Dafür braucht er den Flächeninhalt von seinem Garten, der 36 m² beträgt.

    Die Berechnung für den Flächeninhalt A mit der Seitenlänge ist folgendermaßen entstanden:

    Wir kennen jetzt also den Umfang und die Fläche von dem Garten von Bauer Willi.

    Berechne das Verhältnis zwischen Fläche und Umfang für den Garten von Bauer Willi

    Lösung:

    Du setzt für das A die 36m² ein. Für das U nimmst du den Umfang von 24m.

    Das Verhältnis von Fläche und Umfang ist also 1,5 Metern.

    Das gleiche Ergebnis erhältst du ebenso, wenn du die Seitenlänge a viertelst:

    Umfang Quadrat – Das Wichtigste

    • Die wichtigste Eigenschaft eines Quadrates ist, dass es aus 4 gleich langen Seiten besteht.
    • Eine Seite des Quadrats wird mit dem Buchstaben a bezeichnet.
    • Der Umfang wird durch die Formel U= 4·a berechnet.
    • Es gibt einen signifikanten Unterschied zwischen Fläche und Umfang.
    • Das Verhältnis von Fläche und Umfang eines Quadrates entspricht einem Viertel der Seitenlänge a.
    Lerne schneller mit den 1 Karteikarten zu Umfang Quadrat

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Umfang Quadrat
    Häufig gestellte Fragen zum Thema Umfang Quadrat

    Wie berechnet man den Umfang von einem Quadrat?

    Um den Unfang eines Quadrates zu berechnen brauchst du zunächst die Seitenlänge des Quadrates, also das a.

    Dann multiplizierst du die Seitenlänge mal 4. So bekommst du den Umfang für ein Quadrat raus.

    Formel: U= 4*a

    Erklärung speichern

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 9 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren