Gesetz der großen Zahlen

Mobile Features AB

Wie hoch ist die Wahrscheinlichkeit, dass bei einem Münzwurf die Kopfseite oben liegt? Bei einer fairen Münze liegt die Wahrscheinlichkeit bei 50 Prozent. Wenn Du Dir eine Münze zur Hand nimmst und diese 10-mal hochwirfst, sollte nach der Wahrscheinlichkeit dabei 5-mal die Kopfseite und 5-mal die Zahlseite oben liegen. Fällt bei Deinen 10 Würfen aber nur 4-mal Kopf, ist dies nicht etwa darauf zurückzuführen, dass Deine Münze gezinkt ist. Der Grund dafür liegt im Gesetz der großen Zahlen. Worum es sich dabei genau handelt, erfährst Du im Folgenden.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Gesetz der großen Zahlen Lehrer

  • 10 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 01.12.2022
  • 10 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 01.12.2022
  • 10 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Gesetz der großen Zahlen – Grundlagenwissen

    Bei dem Münzwurfbeispiel handelt es sich um ein Zufallsexperiment, das zwei mögliche Ereignisse als Ausgang haben kann.

    Die Kopfseite liegt oben → Ereignis KDie Zahlseite liegt oben → Ereignis Z

    Gesetz der großen Zahlen, Münze Kopf, StudySmarter

    Gesetz der großen Zahlen, Münze Zahl, StudySmarter

    Beide Ereignisse sind gleich wahrscheinlich. Die theoretische Wahrscheinlichkeit, bei einem Münzwurf die Kopfseite zu treffen, beträgt also 50 Prozent. Die mathematische Schreibweise sieht dabei wie folgt aus:

    p(K)=0,5oderp(K)=50%

    Neben der Wahrscheinlichkeit p(X) gibt es noch die Begriffe der absoluten und relativen Häufigkeiten eines Zufallsereignisses.

    Absolute Häufigkeiten

    Die absolute Häufigkeit ist im weiteren Sinne mit dem Wort Anzahl gleichzusetzen.

    Die absolute Häufigkeit gibt an, wie oft ein bestimmtes Ereignis X innerhalb eines Zufallsexperimentes mit n Versuchen eintritt.

    Die mathematische Schreibweise lautet wie folgt:

    Hn(X)

    Du wirfst 10-mal die Münze. Gesucht ist die Anzahl der Würfe, bei dem die Kopfseite oben liegt.

    In diesem Beispiel liegt die Kopfseite bei vier Würfen oben. Die absolute Häufigkeit von dem Ereignis K lautet dann wie folgt:

    H10(K)=4

    Relative Häufigkeiten

    Die relative Häufigkeit hängt direkt mit der absoluten Häufigkeit zusammen.

    Die relative Häufigkeit eines Zufallsereignisses X beschreibt den Anteil der absoluten Häufigkeit an der Gesamtmenge n der Versuche. Hierbei handelt es sich also um eine Zahl, die zwischen 0 und 1 liegt.

    Du kannst die relative Häufigkeit eines Zufallsereignisses berechnen, indem Du die absolute Häufigkeit durch die Gesamtmenge der Versuche teilst:

    hn(X)=Hn(X)n

    Um die relative Häufigkeit vom Ereignis K zu berechnen, teilst Du die absolute Häufigkeit H10(K) = 4 durch die Gesamtanzahl der Würfe. In diesem Fall hast Du 10-mal die Münze geworfen.

    h10(K)=410h10(K)=0,4

    Gesetz der großen Zahlen – Definition

    Das Gesetz der großen Zahlen (Abkürzung GGZ) wurde von Jakob Bernoulli, einem Schweizer Mathematiker, 1713 erfunden. Es handelt sich dabei um Grenzwertsätze der Stochastik, also der Wahrscheinlichkeitsehre.

    Das Gesetz der großen Zahlen besagt, dass sich die relative Häufigkeit hn(X) eines Zufallsereignisses X immer weiter an die theoretische Wahrscheinlichkeit P(X) dieses Ereignisses annähert, je häufiger das Zufallsexperiment durchgeführt wird.

    Die mathematische Form des Grenzwertsatzes lautet dabei wie folgt:

    limnP(hn(X) - P(X)<ε)=1

    • n steht für die Stichprobengröße
    • hn(X) steht für die relative Häufigkeit vom Ereignis X
    • P(X) steht für die theoretische Wahrscheinlichkeit von Ereignis X
    • ε steht für eine beliebige positive Zahl

    Der Grenzwertsatz sagt Folgendes aus:

    Die Wahrscheinlichkeit dafür, dass bei einer unendlich großen Stichprobenmenge die Differenz zwischen der relativen Häufigkeit und der theoretischen Wahrscheinlichkeit eines Zufallsereignisses X kleiner als eine beliebig kleine positive Zahl ist, liegt bei 100 Prozent.

    Bei einer unendlichen Anzahl von Durchgängen eines Zufallsexperimentes unterscheidet sich demnach die relative Häufigkeit nicht mehr von der theoretischen Wahrscheinlichkeit eines Ereignisses.

    Gesetz der großen Zahlen – Beispiel

    Was bedeutet das konkret für das Münzwurfbeispiel?

    Die zu erwartende Wahrscheinlichkeit p(K), dass bei einem Münzwurf die Kopfseite oben ist, liegt bei 50 Prozent.

    p(K)=50%

    Wenn Du die Münze 10-mal hochwirfst, müsste demnach 5-mal die Kopfseite und 5-mal die Zahlseite oben liegen. Entgegen dieser Annahme zeigt die Münze aber nur 4-mal Kopf und 6-mal Zahl. Die relative Häufigkeit h(k) für Kopf liegt also nur bei 40 Prozent.

    h10(K)=40%

    Wirfst Du jetzt die Münze im nächsten Experiment statt 10-mal, 100-mal hoch, ändert sich diese relative Häufigkeit h(K). Jetzt zeigt die Münze nämlich 44-mal Kopf und 46-mal Zahl. Das entspricht dann einer relativen Häufigkeit h(K) für Kopf von 44 Prozent.

    h100(K)=44%

    Gesetz der großen Zahlen relative Häufigkeitsverteilung im Vergleich mit der theoretischen Wahrscheinlichkeit StudySmarterAbbildung 1: relative Häufigkeitsverteilung für die Kopfseite im Vergleich mit der theoretischen Wahrscheinlichkeit

    Die relative Häufigkeit hat sich bei 100 Würfen der theoretischen Wahrscheinlichkeit P(K) von 50 Prozent weiter angenähert. Erhöhst Du die Anzahl der Würfe jetzt immer weiter, kannst Du sehen, wie die Differenz zwischen der relativen Häufigkeit h(K) und der theoretischen Wahrscheinlichkeit P(K) immer kleiner wird.

    Anzahl Würfedavon Kopfrelative Häufigkeit h(k)Differenz
    1004444%6%
    100047047%3%
    10000494049,4%0,6%
    1000004996049,96%0,04%

    Bei 100 000 Würfen weicht die relative Häufigkeit h(K) Kopf zu treffen, nur noch um 0,04 % von der theoretischen Wahrscheinlichkeit ab. Bei einer unendlichen Anzahl von Münzwürfen entspricht die relative Häufigkeit dann praktisch der theoretischen Wahrscheinlichkeit P(K) von 50 Prozent.

    Schwaches & starkes Gesetz der großen Zahlen – Unterschied

    Du hast bereits gelernt, dass sich die relative Häufigkeit an die theoretische Wahrscheinlichkeit eines Zufallsereignisses mit einer hohen Stichprobenzahl annähert. Dieser Zusammenhang gilt auch für Erwartungswerte von Zufallsvariablen. Das arithmetische Mittel Xn einer großen Stichprobe nähert sich nämlich dem Erwartungswert μ der Grundgesamtheit an.

    Das arithmetische Mittel bezieht sich auf eine konkrete Stichprobe Deines Zufallsexperimentes, von der Du den Durchschnittswert ermittelst. Der Erwartungswert geht von einer unendlich großen Stichprobe aus und gibt den Wert an, der langfristig zu erwarten ist.

    Bei dem Gesetz der großen Zahlen wird zwischen einem starken und einem schwachen Gesetz unterschieden. Dabei geht es darum, wie sicher die beobachtete Größe wirklich gegen den theoretischen Erwartungswert eines Zufallsereignisses mit einer großen Stichprobe konvergiert.

    Bei dem schwachen Gesetz der großen Zahlen ist die Annäherung des Mittelwertes Xn einer unendlichen Folge von Zufallsvariablen an den theoretischen Erwartungswert μ stochastisch wahrscheinlich. Vom starken Gesetz der großen Zahlen wird gesprochen, wenn diese Annäherung nahezu sicher ist.

    Das starke Gesetz der großen Zahlen schließt das schwache Gesetz mit ein. Gilt bei einer Folge von Zufallsvariablen das starke Gesetz, schließt dies das schwache Gesetz der großen Zahlen mit ein.

    Der nächste Abschnitt zeigt die unterschiedlichen Grenzwertsätze der beiden Gesetze nochmal genauer an.

    Schwaches Gesetz der Großen Zahlen

    Du hast bereits einen Grenzwertsatz des Gesetzes der großen Zahlen kennengelernt. Hier geht es aber nicht um die relativen Häufigkeiten, sondern um den Mittelwert von Zufallsvariablen.

    Für das schwache Gesetz der großen Zahlen gilt folgender Grenzwertsatz:

    limnP(Xn-μ<ε)=1

    • n steht für die Stichprobenzahl
    • Xn steht für den Mittelwert der Stichproben n
    • μ steht für den theoretischen Erwartungswert
    • ε steht für eine beliebige positive Zahl

    Der Grenzwertsatz liest sich wie folgt:

    Die Wahrscheinlichkeit dafür, dass die Differenz des Mittelwertes Xn einer unendlichen Folge von Zufallsvariablen und des Erwartungswertes μ kleiner als eine beliebig kleine positive Zahl ε ist, liegt bei 100 Prozent und ist somit stochastisch wahrscheinlich.

    Starkes Gesetz der großen Zahlen

    Das starke Gesetz beschreibt die fast sichere Konvergenz des Mittelwertes Xn einer unendlichen Folge von Zufallsvariablen an den Erwartungswert μ.

    Für das starke Gesetz der großen Zahlen gilt folgender Grenzwertsatz:

    P(limnXn=μ)=1

    • n steht für die Stichprobenzahl
    • Xn steht für den Mittelwert der Stichproben n
    • μ steht für den theoretischen Erwartungswert
    Die Wahrscheinlichkeit dafür, dass bei einer unendlichen Folge von Zufallsvariablen der Mittelwert Xn dem Erwartungswert μ entspricht, liegt bei 100 Prozent, ist also fast sicher.

    Gesetz der großen Zahlen – Anwendungsbereiche

    Im Folgenden erfährst Du nun, in welchen Bereichen das Gesetz der großen Zahlen eine praktische Anwendung findet.

    Gesetz der großen Zahlen bei der Versicherung

    Gerade für die Versicherung ist das Gesetz der großen Zahlen von großer Bedeutung. Diese nutzen es dafür, eine ungefähre Vorhersage über den zukünftigen Schadensverlauf zu treffen. Je mehr Personen, Güter und Sachwerte nämlich versichert sind, desto weniger Einfluss hat der Zufall auf die Gesamtheit der Versicherten. Individuelle Aussagen darüber, wer welchen Schaden haben wird, kann das Gesetz dabei nicht treffen.

    Gesetz der großen Zahlen, Versicherungsschutz, StudySmarter

    Gesetz der großen Zahlen in der Medizin

    Bei der Medizin oder auch allgemein in der Forschung wird das Gesetz der großen Zahlen ebenfalls angewendet. Dort soll eine hohe Anzahl von Versuchen unter denselben Bedingungen dafür sorgen, dass Messfehler keinen Einfluss auf das Ergebnis nehmen können. Darüber hinaus ermöglicht eine hohe Anzahl an Testpersonen eine genauere Aussage über die Wirksamkeit von Medikamenten.

    Gesetz der großen Zahlen, Medikamente, StudySmarter Gesetz der großen Zahlen, Chemie, StudySmarter

    Gesetz der großen Zahlen im Casino

    Viele Spieler setzen, nachdem beim Roulette beispielsweise 6-mal die Farbe Schwarz kam, auf Rot, im Glauben nach der Wahrscheinlichkeit zu gewinnen.

    Gesetz der großen Zahlen, Dartscheibe, StudySmarter

    Tatsächlich ist jede Runde aber als unabhängiges Zufallsexperiment zu sehen. Die Wahrscheinlichkeit hat kein Gedächtnis und denkt nicht, es müsse den Rückstand in der Häufigkeitsverteilung wieder aufholen. Du kannst also keine Vorhersage für die nächste Runde auf Basis der vorigen Runden treffen, auch wenn sich die Verteilung auf lange Sicht ausgleicht.

    Gesetz der großen Zahlen - Das Wichtigste

    • Die relative Häufigkeit hn(X) eines Zufallsereignisses X beschreibt den Anteil der absoluten Häufigkeit an der Gesamtmenge n der Versuche. Hierbei handelt es sich also um eine Zahl, die zwischen 0 und 1 liegt.
    • Das Gesetz der großen Zahlen besagt, dass sich die relative Häufigkeit hn(X) eines Zufallsereignisses X immer weiter an die theoretische Wahrscheinlichkeit p(X) dieses Ereignisses annähert, je häufiger das Zufallsexperiment durchgeführt wird.
    • Bei einer unendlich großen Stichprobenanzahl entspricht die relative Häufigkeit hn(X) dabei der theoretischen Wahrscheinlichkeit p(X) dieses Ereignisses
    • Der Grenzwertsatz des Gesetzes der großen Zahlen lautet: limnP(hn(X) - P(X)<ε)=1
    • Das Gesetz der großen Zahlen besagt auch, dass das arithmetische Mittel Xn einer großen Stichprobe sich dem Erwartungswertμ der Grundgesamtheit annähert.
    • Bei dem schwachen Gesetz der großen Zahlen ist die Annäherung des Mittelwertes Xn einer unendlichen Folge von Zufallsvariablen an den theoretischen Erwartungswertμ stochastisch wahrscheinlich. Vom starken Gesetz der großen Zahlen wird gesprochen, wenn diese Annäherung nahezu sicher ist.
    Lerne schneller mit den 0 Karteikarten zu Gesetz der großen Zahlen

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Gesetz der großen Zahlen
    Häufig gestellte Fragen zum Thema Gesetz der großen Zahlen

    Was ist das Gesetz der großen Zahlen?

    Es handelt sich dabei um Grenzwertsatze in der Stochastik. Das Gesetz der großen Zahlen besagt, dass sich die relative Häufigkeit hn(X) eines Zufallsereignisses X immer weiter an die theoretische Wahrscheinlichkeit P(X) dieses Ereignisses annähert, je häufiger das Zufallsexperiment durchgeführt wird. 

    Was besagt Bernoullis Gesetz der großen Zahl?

    Das Gesetz der großen Zahlen besagt, dass sich die relative Häufigkeit hn(X) eines Zufallsereignisses X immer weiter an die theoretische Wahrscheinlichkeit P(X) dieses Ereignisses annähert, je häufiger das Zufallsexperiment durchgeführt wird. 

    Was ist das empirische Gesetz der großen Zahlen?

    Das empirische Gesetz der großen Zahlen besagt, dass sich die relative Häufigkeit hn(X) eines Zufallsereignisses X immer weiter an die theoretische Wahrscheinlichkeit P(X) dieses Ereignisses annähert, je häufiger das Zufallsexperiment durchgeführt wird. 

    Wann ist etwas wahrscheinlich?

    Die Wahrscheinlichkeit, dass ein Ereignis eintrifft, liegt immer zwischen 0 und 1 bzw. 0 und 100 Prozent. Je wahrscheinlicher das Ereignis eintritt, desto größer ist die Zahl dabei.

    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 10 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren