Schrägbilder bieten in der Geometrie eine Möglichkeit, Körper räumlich auf einem Papier zu zeichnen. Durch solche Schrägbilder kannst Du einen räumlichen Effekt erzeugen. Wie Du Schrägbilder von unterschiedlichen geometrischen Körpern zeichnest, lernst Du in dieser Erklärung kennen.
Abbildung 1: Schrägbild Beispiel
Wiederholung – Geometrische Körper
Da Schrägbilder in der Geometrie eine Möglichkeit bieten Körper räumlich darzustellen, kannst Du Dir vorab in Erinnerung rufen, was Körper in der Geometrie eigentlich sind.
Geometrische Körper sind dreidimensionale Objekte. Sie bestehen aus verschiedenen Flächen, Ecken, Kanten und manchmal Spitzen.
Es gibt viele verschiedene geometrische Körper. Die bekanntesten Körper siehst Du in Abbildung 2.
Abbildung 2: geometrische Körper
Je nachdem, um welche Art von Körpern es sich handelt, haben diese verschiedene Eigenschaften. Um Schrägbilder zeichnen zu können, ist es sinnvoll, dass Du die Eigenschaften dieser Körper kennst.
Körper | Eigenschaften |
Würfel | - Sonderform des Quaders
- alle Flächen sind Quadrate
- alle Kanten sind gleich lang
- hat 12 Kanten, 8 Ecken und 6 Flächen.
|
Quader | - besteht aus Rechtecken, wo immer jeweils 2 Rechtecke sich gegenüber, kongruent und parallel zueinander sind
- hat 12 Kanten, 8 Ecken und 6 Flächen.
Zur Erinnerung: kongruent meint deckungsgleich, bzw. in allen Punkten übereinstimmend. |
Kegel | - Grundfläche ist ein Kreis.
- Grundfläche ist von Mantelfläche umgeben, die in eine Spitze nach oben führt
- hat 2 Flächen, eine Kante und eine Ecke, genauer gesagt Spitze.
|
Zylinder | - Grund- und Deckfläche sind zwei kongruente Kreise, also zwei Kreise mit demselben Radius
- Kreise liegen parallel zueinander
- hat 3 Flächen und 2 Kanten, aber keine Ecken, da die 2 Kanten gekrümmt sind.
|
Pyramide | - ist ein Polyeder
- Grundfläche ist ein Vieleck
- Seitenflächen sind Dreiecke
- Unterscheidung zwischen quadratischen und dreiseitigen Pyramiden
- Quadratische Pyramiden haben 5 Flächen, 8 Kanten und 5 Ecken. Ihre Grundfläche ist ein Quadrat.
- dreiseitige Pyramiden haben 4 Flächen, 6 Kanten und 4 Ecken. Ihre Grundfläche ist ein Dreieck.
|
Prisma | - Grundfläche und Deckfläche sind zwei kongruente Vielecke
- können Dreiecke, Vierecke oder Formen mit mehr Ecken sein
- dementsprechend können Prismen, je nachdem welche Grundfläche sie besitzen, unterschiedlich viele Flächen, Kanten und Ecken haben
|
Schrägbild in der Mathematik – Definition
Geometrische Körper sind dreidimensionale Objekte und lassen sich nicht auf einer ebenen, zweidimensionalen Fläche, wie einem Papier, abbilden. Schrägbilder können Dir allerdings helfen, ein räumliches Bild von den verschiedenen geometrischen Körpern zu bekommen.
Ein Schrägbild eines geometrischen Körpers ist eine dreidimensional wirkende Darstellung des Körpers auf einer ebenen, zweidimensionalen Fläche. Die Vorderansicht bleibt unverändert, während die Seiten- und Deckflächen verkürzt gezeichnet werden.
Durch die schräge Form des Körpers entsteht Tiefe, die Dir helfen kann, Dir das Objekt im Raum vorzustellen.
Für Schrägbilder gibt es einige Punkte, die zu beachten sind:
- Parallele Kanten eines Körpers sind auch im Schrägbild parallel
- Gegenüberliegende Kanten eines Körpers, die in Wirklichkeit gleich lang sind, sind auch im Schrägbild gleich lang.
- Die Kanten eines Körpers, die weg von Dir nach hinten laufen, sind im Schrägbild verkürzt abgebildet.
- Unsichtbare Kanten, also Kanten, die von anderen Flächen verdeckt werden, sind gestrichelt dargestellt.
Verzerrungswinkel und Verkürzungsfaktor
Die Kanten der Seiten und Deckflächen des geometrischen Körpers werden im Schrägbild schräg nach hinten abgebildet. Wie schräg die Kanten nach hinten laufen, wird durch einen Winkel festgelegt, dem Verzerrungswinkel. Je nachdem welcher Verzerrungswinkel gefordert ist, werden die Kanten, die nach hinten laufen, um einen Verkürzungsfaktor a gekürzt.
Typische Verzerrungswinkel und ihre zugehörigen Verkürzungsfaktoren siehst Du in der nachfolgenden Tabelle:
Verzerrungswinkel | Verkürungsfaktor a |
| |
| |
| |
Die Verkürzungsfaktoren gelten nur für Dein Schrägbild. Der Originalkörper behält seine Maße.
Oft wird der Verzerrungswinkel zum Zeichnen eines Schrägbildes verwendet.
Schrägbild zeichnen
Beim Zeichnen eines Schrägbildes wird unterschieden, welcher geometrische Körper abgebildet werden soll. Je nachdem, um welchen Körper es sich handelt, gibt es unterschiedliche Vorgehensweisen. Diese lernst Du im Folgenden kennen.
Tipp: Zeichne die Schrägbilder auf einem karierten Papier. So hast Du bereits Hilfslinien gegeben, an denen Du Dich orientieren kannst.
Schrägbild Würfel
Wie Du das Schrägbild eines Würfels konstruierst, kannst Du Dir anhand eines Beispiels ansehen:
Gezeichnet werden soll das Schrägbild eines Würfels mit einer Kantenlänge von 2 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
1. Schritt: Zeichne die Vorderfläche des Körpers im Originalmaß
Da bei einem Würfel alle Flächen gleich groß und quadratisch sind, ist es egal, welche Fläche Du als Vorderfläche wählst. Ein Kästchen entspricht auf Deinem karierten Papier 0,5 cm, somit beträgt die Kantenlänge Deines Würfels genau 4 Kästchen.
Abbildung 3: Schrägbild Würfel - Vorderfläche
2. Schritt: Zeichne die im Würfel normalerweise senkrecht nach hinten laufenden Kanten im Winkel und um den Faktor verkürzt ein.
Alle sichtbaren Kanten zeichnest Du durchgehend und alle unsichtbaren Kanten, die von anderen Flächen verdeckt werden, gestrichelt. Die Kantenlänge des Würfels beträgt 2 cm, weshalb die Kantenlänge der nach hinten verlaufenden Kanten des Würfels beträgt. Du kannst bei der Kante unten rechts anfangen und einen Winkel mit genau Grad abtragen.
Kleiner Tipp: Die Kästchendiagonale steht genau im 45 Grad Winkel zu seiner unteren Kästchenkante. Du kannst Dich also für das Zeichnen Deiner nach hinten laufenden Kanten daran orientieren.
Nun kannst Du die Kante mit einer Länge von 1 cm nach hinten einzeichnen. Genau so gehst Du an allen weiteren Ecken der Vorderfläche vor.
Abbildung 4: Schrägbild Würfel - nach hinten verlaufende Kanten
3. Schritt: Verbinde die Eckpunkte durch Linien zur Darstellung der parallelen Kanten zur Vorderfläche
Gegenüberliegende Linien sind parallel zueinander und verdeckte Kanten werden wieder gestrichelt gezeichnet.
Abbildung 5: fertiges Schrägbild Würfel
Nun hast Du das Schrägbild Deines Würfels gezeichnet.
Schrägbild Quader
Ähnlich wie das Schrägbild eines Würfels konstruierst Du auch das Schrägbild eines Quaders. Allerdings sind die Kantenlängen unterschiedlich. Somit hast Du verschiedene Ansichten, die Du zeichnen kannst.
Um einen Quader zeichnen zu können, müssen Breite b, Höhe h und Länge l des Quaders gegeben sein.
- Die sichtbare Fläche der Vorderansicht ist ein Rechteck und setzt sich aus Breite b und Höhe h zusammen.
- Die sichtbare Fläche der Seitenansicht ist auch ein Rechteck und setzt sich aus Höhe h und Länge l zusammen.
- Die sichtbare Fläche der Draufsicht ist ebenso ein Rechteck und setzt sich aus Breite b und Länge l zusammen.
In dieser Erklärung lernst Du die Konstruktion des Schrägbildes mit der sichtbaren Fläche der Vorderansicht im Vordergrund kennen. Die Konstruktion des Schrägbildes mit den anderen Ansichten erfolgt aber nach demselben Prinzip.
Wie Du das Schrägbild eines Würfels konstruierst, kannst Du Dir anhand eines Beispiels ansehen:
Gezeichnet werden soll das Schrägbild eines Quaders mit einer Höhe h von 2 cm, einer Breite b von 4 cm und einer Länge l von 3 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
1. Schritt: Zeichne die Vorderfläche des Körpers im Originalmaß
Als Erstes kannst Du Deine Vorderfläche, ein Rechteck, mit der entsprechenden Höhe h und Breite b zeichnen. Ein Kästchen entspricht auf Deinem karierten Papier 0,5 cm.
Abbildung 6: Schrägbild Quader - Vorderfläche
2. Schritt: Zeichne die im Quader normalerweise senkrecht nach hinten laufenden Kanten im Winkel und um den Faktor verkürzt ein.
Alle sichtbaren Kanten zeichnest Du durchgehend und alle unsichtbaren Kanten, die von anderen Flächen verdeckt werden, gestrichelt. Die Länge l des Quaders beträgt 3 cm, weshalb die Kantenlänge der nach hinten verlaufenden Kanten des Quaders beträgt. Du kannst bei der Kante unten rechts anfangen und einen Winkel mit genau Grad abtragen. Nun kannst Du die Kante mit einer Länge von 1,5 cm nach hinten einzeichnen. Genau so gehst Du an allen weiteren Ecken der Vorderfläche vor.
Abbildung 7: Schrägbild Quader - nach hinten verlaufende Kanten
3. Schritt: Verbinde die Eckpunkte durch Linien zur Darstellung der parallelen Kanten zur Vorderfläche
Gegenüberliegende Linien sind parallel zueinander und verdeckte Kanten werden wieder gestrichelt gezeichnet.
Abbildung 8: Schrägbild Quader
Nun hast Du das Schrägbild Deines Quaders gezeichnet.
Schrägbild Zylinder
Um das Schrägbild eines Zylinders konstruieren zu können, solltest Du Dir zuerst die unterschiedlichen Ansichten anschauen.
- In der Vorderansicht sieht der Zylinder aus wie ein Rechteck.
- In der Draufsicht sieht er aus wie ein Kreis.
Durch ein Schrägbild kannst Du den Zylinder räumlich wahrnehmen. Um einen Zylinder zu zeichnen, muss die Höhe h des Zylinders gegeben sein, sowie der Durchmesser d der kreisförmigen Grundfläche des Zylinders.
Ein Zylinder kann sowohl stehend auf einer seiner Grundfläche und liegend auf seiner Mantelfläche gezeichnet werden. In dieser Erklärung lernst Du, wie Du einen Zylinder stehend zeichnest.
Gezeichnet werden soll das Schrägbild eines Zylinders mit einer Höhe h von 5 cm und einem Durchmesser d von 4 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
1. Schritt: Zeichne die Grundfläche des Körpers als Ellipse
Als Erstes kannst Du Deine Grundfläche, einen Kreis, als Ellipse zeichnen, da die Grundfläche verzerrt dargestellt wird. Dazu zeichnest Du zuerst Deinen Durchmesser als horizontale Linie ein. Ein Kästchen entspricht auf Deinem karierten Papier 0,5 cm. Vom Mittelpunkt des Durchmessers aus zeichnest Du anschließend im Winkel eine zweite Linie ein. Diese stellt auch den Durchmesser dar, ist jedoch perspektivisch verkürzt: . Du verbindest abschließend die vier Endpunkte der Linien zu einer Ellipse. Diese zeichnest Du zur Vereinfachung als durchgezogen, allerdings könntest Du die unsichtbaren Linien wieder gestrichelt zeichnen.
Abbildung 9: Grundfläche Zylinder als Ellipse
2. Schritt: Zeichne den Zylinder in der vorgegebenen Höhe
Danach zeichnest Du von beiden Endpunkten der horizontalen Linie des Durchmessers eine Linie senkrecht nach oben, die der Höhe des Zylinders entspricht. In diesem Beispiel gilt: .
Abbildung 10: Höhe des Zylinders im Schrägbild
3. Schritt: Konstruktion der Deckfläche als Ellipse
Im letzten Schritt zeichnest Du die Deckfläche des Zylinders nach demselben Prinzip wie die Grundfläche. Die horizontale Linie, die Du für den Durchmesser d zeichnest, verbindet die Endpunkte der Linie für die Höhe h.
Abbildung 11: Schrägbild Zylinder
Nun hast Du das Schrägbild Deines Zylinders gezeichnet.
Schrägbild Kegel
Zum Zeichnen des Schrägbildes eines Kegels kannst Du Dir vorab wieder die unterschiedlichen Ansichten anschauen.
- In der Vorderansicht sieht der Kegel aus wie ein Dreieck.
- In der Draufsicht und der Ansicht von unten sieht er aus wie ein Kreis.
Um den Kegel zu zeichnen, muss die Höhe h des Kegels gegeben sein, sowie der Durchmesser d der kreisförmigen Grundfläche des Kegels.
Die Konstruktion des Schrägbildes des Kegels kannst Du Dir an folgendem Beispiel ansehen:
Gezeichnet werden soll das Schrägbild eines Kegels mit einer Höhe h von 5 cm und einem Durchmesser d von 4 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
1. Schritt: Zeichne die Grundfläche des Kegels als Ellipse
Der erste Schritt gleicht dem ersten Schritt bei der Konstruktion des Zylinders. Du zeichnest wieder Deine Grundfläche, einen Kreis, als Ellipse. Dazu zeichnest Du zuerst wieder Deinen Durchmesser als horizontale Linie ein. Ein Kästchen entspricht auf Deinem karierten Papier 0,5 cm. Vom Mittelpunkt des Durchmessers aus zeichnest Du anschließend im Winkel die zweite, perspektivisch verkürzte Linie ein. Du verbindest abschließend die vier Endpunkte der Linien zu einer Ellipse. Diese zeichnest Du zur Vereinfachung als durchgezogen, allerdings könntest Du die unsichtbaren Linien wieder gestrichelt zeichnen.
Abbildung 12: Grundfläche des Kegels als Ellipse
2. Schritt: Zeichne den Kegel in der vorgegebenen Höhe
Danach zeichnest Du vom Mittelpunkt der horizontalen Linie des Durchmessers ausgehend eine Linie senkrecht nach oben, die der Höhe h des Kegels entspricht. In diesem Beispiel gilt: .
Abbildung 13: Höhe des Kegels im Schrägbild
3. Schritt: Konstruktion der Seiten des Kegels
Im letzten Schritt zeichnest Du die Seiten des Kegels ein. Dafür startest Du am oberen Ende der Höhenlinie und zeichnest auf beiden Seiten eine gerade Linie zu den Endpunkten der horizontalen Linie des Durchmessers d.
Abbildung 14: Schrägbild Kegel
Nun hast Du das Schrägbild Deines Kegels gezeichnet.
Schrägbild Pyramide
Um das Schrägbild einer Pyramide konstruieren zu können, solltest Du Dir auch zuerst die unterschiedlichen Ansichten anschauen.
- In der Vorderansicht sieht die Pyramide aus wie ein Dreieck
- In der Draufsicht sieht sie entweder wie ein Dreieck oder ein Quadrat aus.
Um eine Pyramide zu zeichnen, muss die Höhe h der Pyramide gegeben sein, sowie die Maße der Grundfläche der Pyramide.
Im folgenden Beispiel lernst Du, wie Du eine Pyramide mit quadratischer Grundfläche zeichnest.
Gezeichnet werden soll das Schrägbild einer Pyramide mit einer Höhe h von 4 cm und einer quadratischen Grundfläche mit einer Kantenlänge a von 3 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
1. Schritt: Zeichne die Grundfläche der Pyramide verzerrt
Als Erstes kannst Du Deine Grundfläche, ein Quadrat, verzerrt zeichnen. Dazu zeichnest Du zuerst eine gerade Linie mit einer Kantenlänge als horizontale Linie ein. Von den Endpunkten zeichnest Du im Verzerrungswinkel eine gerade Linie mit der Länge ein. Die Endpunkte dieser Linien verbindest Du wieder. Unsichtbare Kanten kannst Du wieder gestrichelt zeichnen.
Abbildung 15: Grundfläche Pyramide
2. Schritt: Zeichne die Pyramide in der vorgegebenen Höhe
Die Höhe h der Pyramide kannst Du vom Mittelpunkt des Quadrats senkrecht nach oben einzeichnen. Um den Mittelpunkt zu finden, zeichnest Du beide Diagonalen in Deine Grundfläche ein. Der Schnittpunkt ist Dein Mittelpunkt, von dem Du nun eine Linie mit der Länge der Höhe h senkrecht nach oben zeichnest. In diesem Beispiel gilt: .
Abbildung 16: Höhe der Pyramide im Schrägbild
3. Schritt: Konstruktion der Seitenflächen der Pyramide
Im letzten Schritt zeichnest Du von dem Endpunkt der Höhenlinie eine gerade Linie zu jedem Eckpunkt der Grundfläche. Insgesamt musst Du nun vier Linien zeichnen. Verdeckte Linien kannst Du wieder gestrichelt einzeichnen.
Abbildung 17: Schrägbild Pyramide
Nun hast Du das Schrägbild Deiner Pyramide gezeichnet.
Wenn Du eine Pyramide mit einem Dreieck als Grundfläche zeichnen möchtest, dann ist das Prinzip dasselbe, nur dass Du eine dreieckige Grundfläche zeichnen musst.
Schrägbild Prisma
Da ein Prisma als Grundfläche und Deckfläche zwei kongruente Vielecke hat, gibt es nicht „das Schrägbild“ eines Prismas. Das Zeichenprinzip ist jedoch bei allen Prismen ähnlich. Du kannst ein Prisma sowohl liegend auf den Seitenflächen als auch stehend auf der Grundfläche zeichnen.
Schrägbild Dreiecksprisma
In diesem Beispiel lernst Du, wie Du ein Schrägbild eines liegenden Prismas mit einem gleichseitigen Dreieck als Grundfläche zeichnest:
Gezeichnet werden soll das Schrägbild eines dreiseitigen Prismas mit einer Höhe h von 6 cm und einer Kantenlänge a der dreieckigen Grundfläche von 1 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
1. Schritt: Zeichne die Grundfläche des Prismas im Originalmaß
Als Erstes kannst Du Deine Grundfläche, ein Dreieck, im Originalmaß zeichnen. Ein Kästchen entspricht auf dem karierten Papier wieder 0,5 cm.
Abbildung 18: Grundfläche Dreiecksprisma
2. Schritt: Zeichne die im Prisma normalerweise senkrecht nach hinten laufenden Kanten im Winkel und um den Faktor verkürzt ein.
Die Höhe h des Prismas beträgt 10 cm, weshalb die Kantenlänge der nach hinten verlaufenden Seitenflächen des Prismas beträgt. Du kannst bei der Kante unten rechts anfangen und einen Winkel mit genau abtragen. Nun kannst Du die Kante mit einer Länge von 5 cm nach hinten einzeichnen. Genau so gehst Du an allen weiteren Ecken der Vorderfläche vor.
Abbildung 19: Nach hinten verlaufende Kanten des Prismas im Schrägbild
3. Schritt: Verbinde die Endpunkte der Höhenlinien durch Geraden zur Darstellung der Deckfläche
Als Letztes zeichnest Du Deine Deckfläche. Gegenüberliegende Linien sind parallel zueinander und verdeckte Kanten werden wieder gestrichelt gezeichnet.
Abbildung 20: Schrägbild Prisma
Nun hast Du das Schrägbild Deines Prismas gezeichnet.
Nach demselben Prinzip kannst Du verschiedene Arten von Prismen zeichnen.
Schrägbild Fünfeckprisma
In diesem Beispiel lernst Du, wie Du ein Schrägbild eines liegenden Prismas mit einem Fünfeck als Grundfläche zeichnest:
Gezeichnet werden soll das Schrägbild eines fünfseitigen Prismas mit einer Höhe h von 10 cm und einer Kantenlänge a der Grundfläche von 2 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
1. Schritt: Zeichne die Grundfläche des Prismas im Originalmaß
Als Erstes kannst Du Deine Grundfläche, ein Fünfeck, im Originalmaß zeichnen. Ein Kästchen entspricht auf dem karierten Papier wieder 0,5 cm.
Abbildung 21: Grundfläche Prisma
2. Schritt: Zeichne die im Prisma normalerweise senkrecht nach hinten laufenden Kanten im Winkel und um den Faktor verkürzt ein.
Die Höhe h des Prismas beträgt 10 cm, weshalb die Kantenlänge der nach hinten verlaufenden Seitenflächen des Prismas beträgt. Du kannst bei der Kante unten rechts anfangen und einen Winkel mit genau abtragen. Nun kannst Du die Kante mit einer Länge von 5 cm nach hinten einzeichnen. Genau so gehst Du an allen weiteren Ecken der Vorderfläche vor.
Abbildung 22: Nach hinten laufende Kanten des Prismas im Schrägbild
3. Schritt: Verbinde die Endpunkte der Höhenlinien durch Geraden zur Darstellung der Deckfläche
Als Letztes zeichnest Du Deine Deckfläche. Gegenüberliegende Linien sind parallel zueinander und verdeckte Kanten werden wieder gestrichelt gezeichnet.
Abbildung 23: Schrägbild Prisma
Nun hast Du das Schrägbild Deines Prismas gezeichnet.
Nach demselben Prinzip kannst Du verschiedene Arten von Prismen zeichnen.
Schrägbilder – Aufgaben
Um das Zeichnen von Schrägbildern üben zu können, findest Du in diesem Abschnitt Aufgaben zu diesem Thema.
Aufgabe 1
Gezeichnet werden soll das Schrägbild eines Würfels mit einer Kantenlänge von 4 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
Lösung
1. Schritt: Zeichne die Vorderfläche des Körpers im Originalmaß
Da bei einem Würfel alle Flächen gleich groß und quadratisch sind, ist es egal, welche Fläche Du als Vorderansicht wählst. Ein Kästchen entspricht auf Deinem karierten Papier 0,5 cm, somit beträgt die Kantenlänge Deines Würfels genau 8 Kästchen.
2. Schritt: Zeichne die im Würfel normalerweise senkrecht nach hinten laufenden Kanten im Winkel und um den Faktor verkürzt ein.
Alle sichtbaren Kanten zeichnest Du durchgehend und alle unsichtbaren Kanten, die von anderen Flächen verdeckt werden, gestrichelt. Die Kantenlänge des Würfels beträgt 2 cm, weshalb die Kantenlänge der nach hinten verlaufenden Kanten des Würfels beträgt. Du kannst bei der Kante unten rechts anfangen und einen Winkel mit genau Grad abtragen.
Nun kannst Du die Kante mit einer Länge von 2 cm nach hinten einzeichnen. Genau so gehst Du an allen weiteren Ecken der Vorderfläche vor.
3. Schritt: Verbinde die Eckpunkte durch Linien zur Darstellung der parallelen Kanten zur Vorderfläche
Gegenüberliegende Linien sind parallel zueinander und verdeckte Kanten werden wieder gestrichelt gezeichnet.
Abbildung 24: Schrägbild Würfel - Lösung
Nun hast Du das Schrägbild Deines Würfels gezeichnet.
Aufgabe 2
Gezeichnet werden soll das Schrägbild eines Quaders mit einer Höhe h von 3,5 cm, einer Breite b von 6,5 cm und einer Länge l von 3 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
Lösung
1. Schritt: Zeichne die Vorderfläche des Körpers im Originalmaß
Als Erstes kannst Du Deine Vorderfläche, ein Rechteck, mit der entsprechenden Höhe h und Breite b zeichnen. Ein Kästchen entspricht auf Deinem karierten Papier 0,5 cm.
2. Schritt: Zeichne die im Quader normalerweise senkrecht nach hinten laufenden Kanten im Winkel und um den Faktor verkürzt ein.
Alle sichtbaren Kanten zeichnest Du durchgehend und alle unsichtbaren Kanten, die von anderen Flächen verdeckt werden, gestrichelt. Die Länge l des Quaders beträgt 4 cm, weshalb die Kantenlänge der nach hinten verlaufenden Kanten des Quaders beträgt. Du kannst bei der Kante unten rechts anfangen und einen Winkel mit genau Grad abtragen. Nun kannst Du die Kante mit einer Länge von 2 cm nach hinten einzeichnen. Genau so gehst Du an allen weiteren Ecken der Vorderfläche vor.
3. Schritt: Verbinde die Eckpunkte durch Linien zur Darstellung der parallelen Kanten zur Vorderfläche
Gegenüberliegende Linien sind parallel zueinander und verdeckte Kanten werden wieder gestrichelt gezeichnet.
Abbildung 25: Schrägbild Quader - Lösung
Nun hast Du das Schrägbild Deines Quaders gezeichnet.
Aufgabe 3
Gezeichnet werden soll das Schrägbild eines fünfseitigen Prismas mit einer Höhe h von 6 cm und einer Kantenlänge a der Grundfläche von 1 cm. Der Verzerrungswinkel soll betragen und der Verkürzungsfaktor ist somit .
Lösung
1. Schritt: Zeichne die Grundfläche des Prismas im Originalmaß
Als Erstes kannst Du Deine Grundfläche, ein Fünfeck, im Originalmaß zeichnen. Ein Kästchen entspricht auf dem karierten Papier wieder 0,5 cm.
2. Schritt: Zeichne die im Prisma normalerweise senkrecht nach hinten laufenden Kanten im Winkel und um den Faktor verkürzt ein.
Die Höhe h des Prismas beträgt 10 cm, weshalb die Kantenlänge der nach hinten verlaufenden Seitenflächen des Prismas beträgt. Du kannst bei der Kante unten rechts anfangen und einen Winkel mit genau Grad abtragen. Nun kannst Du die Kante mit einer Länge von 3 cm nach hinten einzeichnen. Genau so gehst Du an allen weiteren Ecken der Vorderfläche vor.
3. Schritt: Verbinde die Endpunkte der Höhenlinien durch Geraden zur Darstellung der Deckfläche
Als Letztes zeichnest Du Deine Deckfläche. Gegenüberliegende Linien sind parallel zueinander und verdeckte Kanten werden wieder gestrichelt gezeichnet.
Abbildung 26: Schrägbild Prisma - Lösung
Nun hast Du das Schrägbild Deines Prismas gezeichnet.
Schrägbild – Das Wichtigste
- Ein Schrägbild eines geometrischen Körpers ist eine dreidimensional wirkende Darstellung des Körpers auf einer ebenen, zweidimensionalen Fläche. Die Vorderansicht bleibt unverändert, während die Seiten- und Deckflächen verkürzt gezeichnet werden.
Für Schrägbilder gibt es einige Punkte, die zu beachten sind:
- Parallele Kanten eines Körpers sind auch im Schrägbild parallel
- Gegenüberliegende Kanten eines Körpers, die in Wirklichkeit gleich lang sind, sind auch im Schrägbild gleich lang.
- Die Kanten eines Körpers, die weg von Dir nach hinten laufen, sind im Schrägbild verkürzt abgebildet.
- Unsichtbare Kanten, also Kanten, die von anderen Flächen verdeckt werden, sind gestrichelt dargestellt.
Wie schräg die Kanten nach hinten laufen, wird durch einen Verzerrungswinkel festgelegt. Je nachdem welcher Verzerrungswinkel gefordert ist, werden die Kanten, die nach hinten laufen, um einen Verkürzungsfaktor a gekürzt.
Schrägbild Würfel, Quader, Prisma (liegend):
- 1. Schritt: Zeichne die Vorderfläche des Körpers im Originalmaß
2. Schritt: Zeichne die im Körper normalerweise senkrecht nach hinten laufenden Kanten im Winkel und um den Faktor verkürzt ein.
3. Schritt: Verbinde die Eckpunkte durch Linien zur Darstellung der parallelen Kanten zur Vorderfläche
Schrägbild Zylinder, Kegel:
- Schrägbild Pyramide:
Nachweise
- Schulze (2015). Die Darstellung von Prismen und Pyramiden im Schrägbild (Mathematik 7. Klasse). GRIN Verlag.
- Albrecht (2020). Elementare Koordinatengeometrie. Springer Spektrum.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen