Umfang Raute

Du hast bestimmt schon öfter Karten gespielt und Dich dadurch vielleicht auch bereits einmal gefragt, welche Form eigentlich das Karo Symbol, unter anderem das Karo Ass hat? 

Los geht’s

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Umfang Raute Lehrer

  • 9 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Denn genau mit dieser geometrischen Figur, nämlich der Raute, wird sich dieser Beitrag beschäftigen.

    Umfang Raute Poker Tisch StudySmarterAbbildung 1: Poker Karten

    Weißt Du noch aus dem Schulunterricht, was genau eine Raute ausmacht? Um das herauszufinden, musst Du Dir noch einmal kurz vor Augen führen, was eine Raute überhaupt ist.

    Die Raute – Grundlagenwissen

    Die Raute, auch Rhombus genannt, ist eine Figur der Geometrie. Rauten sind Vierecke mit besonderen Eigenschaften.Die Raute gehört der Gruppe der Vierecke an und weist insgesamt vier Seiten auf, wobei die gegenüberliegenden Seiten parallel und die gegenüberliegenden Winkel gleich groß sind. Das wichtigste Merkmal der Raute ist, dass alle vier Seiten immer gleich lang sind und beide Diagonalen jeweils eine Symmetrieachse darstellen.

    Folgende Abbildung soll diese Definition verdeutlichen:

    Umfang Raute Raute StudySmarterAbbildung 1: Die Raute

    Hier eine kurze Übersicht einiger Vierecke, um die Raute von anderen Vierecken unterscheiden zu können.

    Umfang Raute Rauts vs. Drachenviereck StudySmarterAbildung 2: Raute vs. Drachenviereck

    Umfang Raute Quadrat vs. Rechteck StudySmarterAbbildung 3: Quadrat vs. Rechteck

    Merke:

    - Beim Quadrat sind alle Winkel immer zwingend 90° groß. Bei der Raute hingegen sind diese beliebig groß!

    - Die Seiten werden mit Buchstaben beschriftet, wobei jeder Buchstabe für einen konkreten Wert steht. Gleich lange Seiten haben demnach dieselben Beschriftungen.

    Da nun Grundlegendes zur geometrischen Figur Raute erklärt wurde, wird auf den Fokus dieses Artikels eingegangen, nämlich der Berechnung des Umfangs.

    Umfang Raute – Erklärung

    In den folgenden Abschnitten wird beschrieben, was genau der Umfang ist, wozu Du diesen benötigst und wie Du den Umfang einer Raute ausrechnen kann.

    Umfang Raute – Herleitung

    Du musst in einer Hausaufgabe den Umfang einer Raute berechnen, jedoch kannst Dich nicht erinnern, was dieser genau ist? Keine Sorge, nach dem Lesen des folgenden Abschnitts wirst Du zukünftige Umfangsaufgaben zur Raute meistern.

    Unter dem Umfang wird die Länge des Randes einer zweidimensionalen Figur verstanden. Dieser wird in der Mathematik immer mit einem großen "U" bezeichnet.

    Für die Herleitung der Umfangsformel der Raute wird folgende Abbildung untersucht:

    Umfang Raute Raute StudySmarterAbbildung 4: Die Raute

    Wie in der Definition beschrieben, stellt der Umfang die Summe der Linien dar, welche die Figur begrenzen. Eine Raute hat immer vier gleich lange Begrenzungslinien, welche mit a bezeichnet werden. Folglich ergibt sich folgende Formel für die Berechnung des Umfangs der Raute:

    Umfang Raute – Berechnen

    Der Umfang einer Raute mit der Seitenlänge a berechnest Du, indem Du alle Seitenlängen aufaddierst.\[U = a+a+a+a \qquad \text{bzw.} \qquad U = 4\cdot a\]

    Dieses Beispiel verdeutlicht die Berechnung des Umfangs der Raute.

    Aufgabe 1

    Nimm Dein kariertes Rechenheft zur Hand und schlage eine beliebige leere Seite auf. Hier siehst Du zahlreiche Kästchen. Du stellst Dir jetzt folgende Frage:

    „Wie lang ist der gesamte Rand einer Raute, dessen Seiten a jeweils 2,5 cm lang sind?"

    Umfang Raute Umfang Raute StudySmarterAbbildung 5: Umfang Raute

    Lösung

    Wie Du bereits weißt, sind alle Seiten der Raute immer gleich lang, also sind alle genau 2,5 cm lang. Wenn Du nun alle vier Seiten zusammenzählst, erhältst Du den Umfang bzw. die Länge der Strecke, welche die Figur umschließt. Somit kann der Wert für a in die Formel für den Umfang der Raute eingesetzt werden.

    U =a + a + a + a oder U =4 · a

    U = 4 · 2,5 cmU = 10 cm

    Der Umfang der Raute mit den Seitenlängen 2,5 cm beträgt also 10 cm.

    Mithilfe des Umfangs können verschiedene andere Variablen wie Seiten oder Diagonalen berechnet werden.

    Rechnen mit dem Umfang einer Raute

    Sollte der Umfang bei Übungsaufgaben gegeben sein, können mithilfe dessen, die Seiten und im Anschluss auch die Diagonalen der Raute berechnet werden. Wie genau Du hier vorgehen musst, wird in diesem Abschnitt erklärt.

    Raute – Berechnung der Seite a mit dem Umfang

    Besteht eine Aufgabe darin, die Seite a bei gegebenem Umfang zu berechnen, wird wie folgt vorgegangen:

    Rechenschritte
    Schritt 1:Umfangsformel für die Raute hinschreiben
    Schritt 2:Stelle diese nach der Seite a frei
    Schritt 3:Wert für den Umfang einsetzen
    Schritt 4:Gleichung lösen

    Rechnerisch sieht dies wie folgt aus:

    Aufgabe 2

    Berechne die Seite a einer Raute, welche einen Umfang von 24 cm aufweist.

    Lösung

    Wenn Du den Rechenschritten folgst, erhältst Du folgende Rechnung:

    U = 4 · a | : 4U4 =a24 cm4 = a6 cm =a

    Die Lösung lautet somit a = 6 cm.

    Der Umfang kann auch berechnet werden, falls die Diagonalen e und f gegeben sind.

    Umfang Raute – Berechnung des Umfangs U mithilfe der Diagonalen

    Befindest Du Dich bereits in der neunten Klasse oder höher, dann sie Dir den folgenden Deep Dive unbedingt an, wie der Umfang mithilfe der Diagonalen berechnet werden kann. Ansonsten kannst Du diesen überspringen und direkt zu den weiteren Beispielen übergehen.

    Aufgabe 3

    Eine Raute weist folgende Werte auf:

    e =6 cmf = 5 cm

    Berechne den Umfang der Raute!

    Lösung

    Um den Umfang ausrechnen zu können, wird zuerst ein Wert für die Seite a benötigt. Dieser kann mithilfe des Satzes des Pythagoras ausgerechnet werden, welcher bei rechtwinkligen Dreiecken zur Anwendung kommt. Bei Betrachtung der Raute wird festgestellt, dass die Diagonalen diese in vier gleich große rechtwinklige Dreiecke aufteilen:

    Umfang Raute Satz des Pythagoras StudySmarterAbbildung 6: Satz des Pythagoras - Raute

    Da die Seite a berechnet werden muss, wird der Satz des Pythagoras angewendet, welcher wie folgt lautet:

    K12 + K22 = H2

    K1 und K2 stehen für die kürzeren Seiten im rechtwinkligen Dreieck, welche in Abbildung 12 dargestellt werden. Da beide Diagonalen zugleich die Symmetrieachse der Figur darstellen, sind die kurzen Seiten bzw. die Katheten des in der Abbildung dargestellten rechtwinkligen Dreiecks jeweils die Hälfte der Strecke der Diagonalen, also e2 und f2, welche auch als K1 und K2bezeichnet werden können. Die Seite a stellt die Hypotenuse H, also die längere und vom rechten Winkel gegenüberliegende Seite dar.

    Umfang Raute Satz des Pythagoras StudySmarterAbbildung 7: Satz des Pythagoras - Raute

    Werden nun die Werte bzw. Buchstaben in die Formel eingesetzt und die Gleichung nach a aufgelöst, sieht dies wie folgt aus:

    K12 + K22 = H2 | Buchstaben anstelle von K1, K2 und H einsetzen(e2)2 + (f2)2 =a2 | Werte anstelle der Buchstaben einsetzen (62)2 + (52)2 =a2 | Brüche in Klammern auflösen 32 + 2,52 = a2 | 3² und 2,5² ausrechnen9 + 6,25 =a2 | 9 + 6,25 zusammenzählen15,25 =a2 | Wurzel aus 15,25 ziehen 15,25 = a3,91 =a

    Als letzten Schritt wird der Wert für a in die Umfangsformel der Raute eingesetzt:

    U = 4 · aU = 4 · 3,91 cmU =15,64 cm

    Somit beträgt der Umfang dieser Raute 15,64 cm.

    Umfang Raute – Übungsaufgaben

    Mithilfe der folgenden Übungsbeispiele soll deutlich werden, wie genau der Umfang einer Raute innerhalb von Sekunden berechnet werden kann.

    Aufgabe 4

    Die Seitenlänge einer Raute beträgt a = 5 cm.

    Berechne den Umfang U!

    Lösung

    Da für diese Aufgabe bereits alle für die Berechnung der Raute relevanten Werte gegeben sind, wird keine Skizze benötigt und es kann direkt zur Berechnung übergegangen werden.

    Schreibe als Erstes die Formel des Umfangs der Raute nieder, welche wie folgt lautet:

    U =4 a

    Nun müssen diese in die Formel für die Berechnung des Umfangs für a eingesetzt werden:

    U = 4 · aU =4 · 5 cmU = 20 cm

    Somit beträgt der Umfang dieser Raute 20 cm.

    Weiter geht's mit einem nächsten Beispiel.

    Aufgabe 5

    Gegeben ist folgender Wert einer Raute: a =7 cm

    Berechne den Umfang U der Raute.

    Lösung

    Da für diese Aufgabe bereits alle für die Berechnung der Raute relevanten Werte gegeben sind, wird keine Skizze benötigt und es kann direkt zur Berechnung übergegangen werden.

    Schreibe als Erstes die Formel des Umfangs der Raute nieder, welche wie folgt lautet:

    U =4 a

    Nun wird anstelle des Buchstabens a der effektive Wert aus der Angabe eingesetzt.

    U =4 · 7 cmU = 28 cm

    Der Umfang der Raute beträgt also 28 cm.

    Soweit alles verstanden? Super, dann auf zur nächsten Aufgabe!

    Aufgabe 5

    Die Fläche einer Raute beträgt 25 cm2, wobei die Seiten e und f gleich lang sind.

    Berechne den Umfang der Raute!

    Lösung

    Als ersten Schritt wird eine Skizze des Sachverhaltes angefertigt.

    Umfang Raute Skizze StudySmarterAbbildung 8: Skizze

    Wenn bestimmte Seiten ausgerechnet werden müssen, werden als Erstes immer alle Formeln aufgeschrieben, welche die gegebenen oder gesuchten Variablen enthalten. Auf dieses Beispiel bezogen wären dies die beiden Flächenformeln, welche wie folgt lauten:

    A = a2 oder A = e · f2

    Die Formel A = a2 kann nur verwendet werden, wenn beide Diagonalen gleich lang sind!

    Nun werden beide Formeln untersucht und jene ausgewählt, welche nur eine unbekannte Variable enthält. Da die Diagonale weder aus e noch aus f aus der Angabe abgeleitet werden können, wird diese Formel ausgeschlossen.

    Um jetzt die Seite a ausrechnen zu können, wird also die erste Flächenformel verwendet und die Werte aus der Aufgabe eingesetzt. Um den Wert für a zu korrekt zu berechnen, sieht dies wie folgt aus:

    A = a2A = a25cm2 = a5 cm = a

    Um den Umfang ausrechnen zu können, muss der Wert für a in die Umfangsformel eingesetzt werden.

    U=4 · aU = 4 ·5 cmU = 20 cm

    Somit hat die Raute einen Umfang von 20 cm.

    Genau wie in diesem Beispiel kann auch eine der beiden Diagonalen anstelle von a berechnet werden.

    Umfang Raute – Das Wichtigste auf einen Blick

      • Eine Raute erkennst Du daran, dass sie vier Winkel, vier Ecken und vier Seiten aufweist.
      • Alle Seiten der Raute sind immer gleich lang, wobei die Diagonalen jedoch unterschiedlich lang sein können.
      • Die Umfangsformel der Raute lautet: U =4 · a
      • Seitenformel für a: a =U4
      • Bei gegebenen Diagonalen e und f kann die Seite a mithilfe des Satzes nach Pythagoras berechnet werden, welche dann in die Umfangsformel eingesetzt werden kann.
      • Die Diagonalen können ebenfalls mithilfe des Satzes nach Pythagoras berechnet werden, insofern die Seite a und eine der beiden Diagonalen gegeben ist.

    Nachweise

    1. Ludwig et al. (2015). Geometrie zwischen Grundbegriffen und Grundvorstellungen. Springer Verlag.
    2. Benölken et al.(2018). Leitfaden Geometrie. Springer Verlag.
    Häufig gestellte Fragen zum Thema Umfang Raute

    Hat eine Raute 4 gleiche Seiten? 

    Die vier Seiten einer Raute sind immer alle gleich lang!

    Wie berechnet man den Umfang von einer Raute? 

    Hierfür muss man alle Seiten, welche die Figur begrenzen zusammenzählen. Somit lautet die Formel U = 4 · a

    Wie berechnet man die Höhe der Raute? 

    Die Höhe oder auch Diagonale der Raute kann mithilfe des Satzes nach Pythagoras ausgerechnet werden.

    Erklärung speichern

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Was unterscheidet eine Raute von einem Drachenviereck?

    Überprüfe folgende Aussagen zur Raute!

    Wie wird der Umfang mathematisch abgekürzt?

    Weiter

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 9 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren